

NUC501 IP

Programming Guide

V1.00
Publication Release Date: Feb. 2009

 NUC501 IP Programming Guide

- 2 -

The information in this document is subject to change without notice.

The Nuvoton Technology Corp. shall not be liable for technical or editorial errors or omissions

contained herein; nor for incidental or consequential damages resulting from the furnishing,
performance, or use of this material.

This documentation may not, in whole or in part, be copied, photocopied, reproduced, translated,
or reduced to any electronic medium or machine readable form without prior consent, in writing,

from the Nuvoton Technology Corp.

Nuvoton Technology Corp. All rights reserved.

 NUC501 IP Programming Guide

- 3 -

Table of Contents
1. Introduction ... 9

1.1. Block Diagram ... 10

2. System Manager (SYS) ... 12

2.1. Overview .. 12

2.2. System Memory Map ... 12

2.3. AHB Bus Arbitration ... 13

2.4. Priority Mode ... 14

2.4.1. Fixed Priority Mode .. 14
2.4.2. Round Robin Priority Mode .. 14

2.5. Clock Controller ... 15

2.6. SRAM Controller ... 18

2.7. Power Manager Mode .. 19

3. Advanced Interrupt Controller (AIC) .. 20

3.1. Overview .. 20

3.2. Block Diagram ... 21

3.3. Interrupt Source ... 21

3.4. Registers ... 23

3.5. Function Description .. 24

3.5.1. Interrupt Channel, Priority and Source Type ... 24
3.5.2. Fake Interrupt .. 25
3.5.3. Interrupt Handling ... 25
3.5.4. Interrupt Masking .. 26
3.5.5. Interrupt Clearing and Setting ... 26
3.5.6. ICE/Debug Mode .. 26
3.5.7. FIQ/IRQ Handler Control Sequence ... 27

4. SPI Synchronous Serial Interface Controller ... 28

4.1. Overview .. 28

4.2. Block Diagram ... 29

 NUC501 IP Programming Guide

- 4 -

4.3. Registers ... 30

4.4. Function Description .. 31

4.4.1. Command mode .. 31
4.4.2. DMA mode .. 32
4.4.3. DMM mode ... 32
4.4.4. Fetch code from SPI memory .. 33
4.4.5. Application limitations .. 34

5. Analog to Digital Converter (ADC) ... 35

5.1. Overview .. 35

5.2. Block Diagram ... 35

5.3. Registers ... 35

5.4. Function Description .. 36

5.4.1. ADC normal mode operation .. 36
5.4.2. Audio recording ... 37
5.4.3. Low voltage detection ... 38

6. Analog Processing Unit (APU) ... 40

6.1. Overview .. 40

6.2. Block Diagram ... 40

6.3. Registers ... 41

6.4. Function Description .. 41

6.4.1. Sampling rate control .. 41
6.4.2. Threshold and DAC control .. 42
6.4.3. Equalizer control ... 42
6.4.4. APU example .. 42

7. I
2
C Synchronous Serial Interface Controller ... 44

7.1. Overview .. 44

7.2. Block Diagram ... 45

7.3. Registers ... 45

7.4. Functional Descriptions ... 46

7.4.1. Limitation .. 46
7.4.2. A complete data transfer .. 46
7.4.3. START and STOP condition ... 46
7.4.4. Acknowledge ... 47
7.4.5. Mater read and write .. 48
7.4.6. Example of an I2C-bus configuration using two micro-controllers ... 49
7.4.7. Hardware I2C ... 49
7.4.8. Software I2C .. 51

 NUC501 IP Programming Guide

- 5 -

7.4.9. Arbitration ... 51

7.5. Relative registers definition ... 52

8. General Purpose I/O (GPIO) ... 56

8.1. Overview .. 56

8.2. Block Diagram ... 57

8.3. Registers ... 58

8.4. Functional Description ... 59

8.4.1. Pin description ... 59
8.4.2. PAD Function Setting .. 59
8.4.3. GPIO Output Mode ... 59
8.4.4. GPIO Input Mode .. 61
8.4.5. GPIO Interrupt ... 61

9. Pulse Width Modulation (PWM) ... 63

9.1. Overview .. 63

9.2. Block Diagram ... 63

9.3. Registers ... 65

9.4. Functional Description ... 66

9.4.1. PWM Timer / Capture Channel ... 66
9.4.2. PWM Timer ... 66
9.4.3. Capture .. 75

10. Real Time Clock (RTC) .. 78

10.1. Overview .. 78

10.2. Block Diagram ... 78

10.3. Registers ... 79

10.4. Functional Description ... 80

10.4.1. Initialization ... 80
10.4.2. RTC Read/Write Enable .. 80
10.4.3. Frequency Compensation .. 80
10.4.4. Time and Calendar counter .. 80
10.4.5. Day of the week counter .. 80
10.4.6. Time tick interrupt ... 81
10.4.7. RTC register property .. 81
10.4.8. Application Note ... 81

10.5. Programming Note ... 82

11. Serial Peripheral Interface Controller (SPI Master/Slave) 86

 NUC501 IP Programming Guide

- 6 -

11.1. Overview .. 86

11.1.1. SPI Serial Interface Controller (Master/Slave) .. 86

11.2. Block Diagram ... 87

11.2.1. SPI Block Diagram (Master/Slave) ... 87
11.2.2. SPI Timing Diagram (Master/Slave) ... 88

11.3. Registers ... 90

11.4. Functional Description ... 91

11.4.1. Active SPI Controller .. 91
11.4.2. Initialize SPI Controller ... 91
11.4.3. SPI Controller Transmit/Receive ... 91
11.4.4. SPI Programming Example ... 91

12. Timer and WDT .. 93

12.1. Overview .. 93

12.1.1. General Timer Controller .. 93
12.1.2. Watchdog Timer .. 93

12.2. Block Diagram ... 94

12.3. Registers ... 95

12.4. Functional Description ... 95

12.4.1. Interrupt Frequency ... 95
12.4.2. Initialization ... 96
12.4.3. Timer Interrupt Service Routine .. 97
12.4.4. Watchdog Timer .. 98

13. UART .. 100

13.1. Overview .. 100

13.2. Block Diagram ... 101

13.3. Registers ... 101

13.4. Functional Description ... 102

13.4.1. Clock Source ... 102
13.4.2. Baud Rate .. 102
13.4.3. Initializations ... 102
13.4.4. Polled I/O Functions .. 104
13.4.5. Interrupted I/O Functions .. 106

14. USB ... 110

14.1. Block Diagram ... 110

14.2. Registers ... 110

14.3. Introduction to USB ... 112

 NUC501 IP Programming Guide

- 7 -

14.4. Function Descriptions .. 114

14.4.1. Registers Programming ... 114
14.4.2. Initialization ... 114
14.4.3. Control Transfer .. 114
14.4.4. Others‟ Transfer ... 116

14.5. Code Section .. 116

14.5.1. Initialization ... 116
14.5.2. Control Transfer - Get Descriptor.. 117
14.5.3. Bulk Out .. 118

15. Revision History .. 120

 NUC501 IP Programming Guide

- 8 -

Table of Figures

Figure 1-1 NUC501 Functional Block Diagram .. 10
Figure 8-1 Type I GPIO: Input/Output Port with Program Controlled Weakly Pull-High 56
Figure 8-2 Type II GPIO: Input/Output Port with Schmitt-Trigger Input ... 57
Figure 8-3 GPIO Block Diagram ... 57
Figure 9-1 PWM Architecture Diagram .. 64
Figure 9-2 Basic Timer Operation Timing .. 67
Figure 9-3 PWM Double Buffering Illustration .. 68
Figure 9-4 PWM Controller Output Duty Ratio .. 69
Figure 9-5 Dead Zone Generation Operation .. 70
Figure 9-6 PWM Timer Start Procedure .. 73
Figure 9-7 PWM Timer Stop flow chart (method 1) ... 74
Figure 9-8 PWM Timer Stop flow chart (method 2) ... 75
Figure 10-1 RTC Architecture Diagram .. 79
Figure 10-2 RTC Set Calendar and Time flow chart ... 83
Figure 10-3 RTC Set Calendar and Time Alarm flow chart .. 84
Figure 10-4 RTC Set tick interrupt flow chart ... 85
Figure 11-1 SPIMS Block Diagram(Master/Slave) ... 87
Figure 11-2 SPI Timing (Master) .. 88
Figure 11-3 Alternate Phase SCLK clock Timing (Master) .. 89
Figure 11-4 SPI Timing (Slave) ... 89
Figure 11-5 Alternate Phase SCLK Clock Timing (Slave) .. 90
Figure 12-1 Timer Block Diagram .. 94
Figure 12-2 Watchdog Timer Block Diagram ... 94
Figure 12-3 Timer Initialization Sequence .. 97
Figure 12-4 Timer Interrupt Service Routine .. 98
Figure 12-5 Enable Watchdog Timer .. 99
Figure 12-6 Watchdog Timer ISR ... 99
Figure 13-1 UART initialization .. 104
Figure 13-2 Transmit data in polling mode ... 105
Figure 13-3 Receive data in polling mode ... 106
Figure 13-4 Output function in interrupt mode .. 107
Figure 13-5 Input functions in interrupt mode ... 108
Figure 13-6 Interrupt Service Routine ... 109
Figure 14-1 USB Block Diagram .. 110
Figure 14-2 DATA Packet above represents the command of this stage. .. 112
Figure 14-3 Data Packet above represents the device information. ... 113
Figure 14-4 Data Packet above usually is zero-packet which represents ACK. .. 113

 NUC501 IP Programming Guide

- 9 -

1. Introduction

The NUC501 is an ARM7TDMI-based MCU, specifically designed to offer low-cost and high performance

for various applications, like interactive toys, edutainment robots, and home appliances. It integrates the

32-bit RISC CPU with 32KB high-speed SRAM, crypto engine with OTP key, boot ROM, LDO regulator,

ADC, DAC, I2C, SPI, USB2.0 FS Device, & GPIO into a cost-affordable while feature-rich

micro-controller.

Owing to the simplicity of the NUC501 architecture that boots SpiMemory1 into the high-speed SRAM for

program execution, the total system BOM is reduced to its minimum. Unlike usual ARM-based MCU

products, the NUC501 operates without the use of SDRAM, which is usually the source of complexity,

higher power consumption, and cost.

The ARM7TDMI runs up to 108MHz on the high-speed SRAM to offer enough horsepower for many

MIPS-hungry tasks, while the remaining MIPS is still able to serve the need of application program. For

those applications, like cartridge games, that require large code storage and variation of game play

scenarios, the patented Extensible XIP Addressing on SpiMemory gives the flexibility whenever program

execution speed is not a critical concern.

To protect the code against illegal pirating, the NUC501 provides a crypto engine that works with internal

OTP2 key to encrypt the data stored at external SpiMemory when the design-in is finished. Without the

knowledge of the OTP key, others can‟t decrypt the data even by means of ICE debugging.

The NUC501 is designed with special care to minimize the power consumption while allowing for the

flexibility to reach for high performance. It includes the clock gating, variable frequency control for

individual IP‟s, and bus control to reduce signal toggle. Besides, the NUC501 can be further operated

under different power-saving modes: idle, power down with RTC active, and power down mode.

With so many practical peripherals integrated around the high-performance ARM7 CPU, the NUC501 is

suitable for such applications as Interactive toys, edutainment robots, and home appliances. Whenever

MIPS-hungry task meets cost-effective demand, you‟ll find the NUC501 truly useful to satisfy the

requirement.

 NUC501 IP Programming Guide

- 10 -

1.1. Block Diagram

ARM7TDMI
RTC

TIMER

UART x 2

PWM

AIC

Internal Boot ROM

6KB

USB

SPIM x 2 PLL

USBPHY

APU

Audio

DAC
Mono

16-bits DAC

ADC
8ch/10b-

SARADC

GPIO

SPIMS

I2C

Internal SRAM

(32KB)

ADC

Ctrl

LDOOTP

LVD, LDR

Figure 1-1 NUC501 Functional Block Diagram

On the following chapters, programming note of each chapter will be described in detailed.

 Chapter 2 : System Manager

 Chapter 3 : Advanced Interrupt Controller

 Chapter 4 : SPI Synchronous Serial Interface Controller

 Chapter 5 : Analog to Digital Converter

 Chapter 6 : Analog Processing Unit

 Chapter 7 : I2C Synchronous Serial Interface Controller

 Chapter 8 : General Purpose I/O

 Chapter 9 : Pulse Width Modulation

 Chapter 10: Real Time Clock

 Chapter 11 : Serial Peripheral Interface Controller (SPI Master/Slave)

 NUC501 IP Programming Guide

- 11 -

 Chapter 12 : Timer and WDT

 Chapter 13 : UART

 Chapter 14 : USB

 NUC501 IP Programming Guide

- 12 -

2. System Manager (SYS)

2.1. Overview

The following functions are included in system manager section

 System memory map

 Bus arbitration algorithm

 Clock controller

 SRAM bank mapping

 System suspend

2.2. System Memory Map

NUC501 provides a 4G-byte address space for programmers. The memory locations assigned to each

on-chip modules are shown in following table. The detailed register and memory addressing and

programming will be described in the following sections for individual on-chip modules. NUC501 only

supports little-endian data format.

Address Space Token Modules

Memory Space

0x0000_0000 – 0x0000_7FFF IBR_BA Internal Boot ROM (IBR) Memory Space

(IBR_remap = 0)

0x0000_0000 – 0x1FFF_FFFF SRAM_BA SRAM Memory Space (IBR_remap = 1)

0x2000_0000 – 0x3FFF_FFFF SRAM_BA SRAM Memory Space (IBR_remap = 0)

0x4000_0000 – 0x4FFF_FFFF SPI Flash/ROM Memory Space (SPIM0)

0x6000_0000 – 0x6000_7FFF IBR_BA Internal Boot ROM (IBR) Memory Space
(IBR_remap = 1)

AHB Modules Space

0xB100_0000 – 0xB100_01FF GCR_BA Global Control Registers

0xB100_0200 – 0xB100_02FF CLK_BA Clock Control Registers

0xB100_4000 – 0xB100_4FFF SRAMCTL_BA SRAM Control Registers

0xB100_7000 – 0xB100_7FFF SPIM0_BA SPIM0 Control Register

0xB100_8000 – 0xB100_8FFF APU_BA Audio Process Unit (APU) Controller Registers

 NUC501 IP Programming Guide

- 13 -

Table 1 : Memory Map

2.3. AHB Bus Arbitration

The internal bus of NUC501 chip is an AHB-compliant Bus and supports to connect with the standard

AHB master or slave. NUC501‟s AHB arbiter provides a choice of two arbitration algorithms for

simultaneous requests. These two arbitration algorithms are the d-priority mode and the

round-robin-priority (rotate) mode. The selection of modes and types is determined on the PRTMOD0

control register in the Arbitration Control Register.

AHB bus arbiter also provides a mechanism for the maximum burst length for each AHB bus transfer. The

maximum burst length is 16, and when the current AHB data transfer count is equal to the maximum burst

length, the access of current AHB bus owner will be broken.

Register Address R/W Description Default Value

AHB_CTRL GCR_BA+0x20 R/W AHB Control Register 0x0000_0000

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved IPACT IPEN Reserved PRTMOD0

0xB100_9000 – 0xB100_9FFF USB_BA USB Device Controller Registers

APB Modules Space

0xB800_1000 – 0xB800_1FFF ADC_BA Analog-Digital-Converter (ADC) Controller

Registers

0xB800_2000 – 0xB800_2FFF AIC_BA Interrupt Controller Registers

0xB800_3000 – 0xB800_3FFF GPIO_BA GPIO Controller Registers

0xB800_4000 – 0xB800_4FFF I2C_BA I2C Interface Control Registers

0xB800_7000 – 0xB800_7FFF PWM_BA PWM Controller Registers

0xB800_8000 – 0xB800_8FFF RTC_BA Real Time Clock (RTC) Control Register

0xB800_A000 – 0xB800_AFFF SPIMS_BA SPI master/slave function Controller Registers

0xB800_B000 – 0xB800_BFFF TIMER_BA Timer Control Registers

0xB800_C000 – 0xB800_CFFF UART_BA UART Control Registers

 NUC501 IP Programming Guide

- 14 -

2.4. Priority Mode

2.4.1. Fixed Priority Mode

Fixed priority mode is selected if PRTMOD = 0. The order of priorities on the AHB mastership among the

on-chip master modules, listed in following table. If two or more master modules request to access AHB

bus at the same time, the higher priority request will get the permission to access AHB bus.

The SPI flash controller normally has the lowest priority under the fixed priority mode. NUC501 provides

a mechanism to raise the priority of CPU request to the highest. If the IPEN bit (bit-4 of AHB Control

Register) is set to 1, the IPACT bit (bit-5 of AHB Control Register) will be automatically set to 1 while an

unmasked external NFIQ or NIRQ occurs. Under this circumstance, the ARM core will become the highest

priority to access AHB bus.

The programmer can recover the original priority order by directly writing “1” to clear the IPACT bit. For

example, this can be done that at the end of an interrupt service routine. Note that IPACT only can be

automatically set to 1 by an external interrupt when IPEN = 1. It will not take effect for a programmer to

directly write 1 to IPACT to raise ARM core‟s AHB priority.

2.4.2. Round Robin Priority Mode

Round-robin priority mode is selected if PRTMOD = 1. The AHB bus arbiter uses a round robin arbitration

scheme for every master module to gain the bus ownership in turn. That is the requestor having the highest

priority becomes the lowest-priority requestor after it has been granted access.

Priority Sequence

AHB Bus Priority

PRTMOD[0] = 0

ARM7TDMI

1 (Lowest)

2

SPIM0

3 (Highest)

APU

 NUC501 IP Programming Guide

- 15 -

2.5. Clock Controller

The clock controller generates the clocks for the whole chip, it include all AMBA interface modules and all

peripheral clocks, the USB, UART, APU and so on. There is one PLL modules in this chip, and the PLL

clock source is from the external crystal input.

The clock controller implements the power control function, include the individually clock on or off

control register, clock source select and the divided number from clock source. These functions minimize

the extra power consumption and the chip run on the just condition. On the power down mode the

controller turn off the crystal oscillator to minimize the chip power consumption.

The clock HCLK is the source for all the AMBA modules. The HCLK is the operating clock for the SRAM

and it is divided by two from one of the sources, Crystal, PLL, PLL/2 and the crystal 32 KHz, the HCLK is

used for the AMBA AHB BUS clock. The ARM7 CPU uses the same frequency as the HCLK. The APB

clock is divided from the HCLK too.

ADC

APU

USB

UART

HCLK

PCLK

1/ADC_N

1/APB_N

1/USB_N

1/UART_N

1/(HCLK_N x 2) CPU

PLL

Crystal

1/2

APB

Modules

AHB

ModulesClock Select

1/APB_N

ADC_CK_EN

APU_CK_EN

USBD_CK_EN

UART_CK_EN

AHB_Modules_CK_EN

CPU_CK_EN

APB_CK_EN

APB_Modules_CK_EN

MPLL Control Register （MPLLCON）

The MPLL reference clock input is directly from the external clock input, and the other PLL control

inputs are connected to bits of the registers.

 NUC501 IP Programming Guide

- 16 -

Register Address R/W Description Reset Value

MPLLCON CLK_BA + 20 R/W MPLL Control Register 0x0001_4035

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved OE BP PD

15 14 13 12 11 10 9 8

OUT_DV IN_DV FB_DV

7 6 5 4 3 2 1 0

FB_DV

Output Clock Frequency Setting:

FOUT = FIN * NF/NR*1/NO

Constrain:

 3.2MHz < FIN <150MHz

 800KHz < FIN/NR < 8MHz

 200MHz < FCO = FIN*NF/NR < 500MHz

 250MHz < FCO is preferred

Where

AHB Devices Clock Enable Control Register （AHBCLK）

These register bits are used to enable/disable clock for AMBA clock, AHB engine and peripheral

Register Address R/W Description Reset Value

AHBCLK CLK_BA + 04 R/W
AHB Devices Clock Enable Control

Register
0x0000_0083

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

FOUT Output Clock Frequency

FIN Input (Reference) Clock Frequency

NR Input Divider (2 x (IN_DV + 2))

NF Feedback Divider (2 x (FB_DV + 2))

NO OUT_DV = “00” : NO = 1

OUT_DV = “01” : NO = 2

OUT_DV = “10” : NO = 2

OUT_DV = “11” : NO = 4

 NUC501 IP Programming Guide

- 17 -

Reserved

15 14 13 12 11 10 9 8

Reserved APU_CK_EN

7 6 5 4 3 2 1 0

SPIM_CK_EN USBD_CK_EN Reserved APB_CK_EN CPU_CK_EN

APB Devices Clock Enable Control Register （APBCLK）

These register bits are used to enable/disable clock for APB engine and peripheral.

Register Address R/W Description Reset Value

APBCLK CLK_BA + 08 R/W APB Devices Clock Enable Control Register 0x0000_0007

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved ADC_CK_EN SPIMS_CK_EN

7 6 5 4 3 2 1 0

Reserved I2C_CK_EN PWM_CK_EN UART1_CK_EN UART0_CK_EN RTC_CK_EN WD_CK_EN TIMER_CK_EN

Clock Source Select Control Register （CLKSEL）

Before clock switch the related clock sources (pre-select and new-select) must be turn on.

Register Address R/W Description Reset Value

CLKSEL CLK_BA + 10 R/W Clock Source Select Control Register 0x0000_0000

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

ADC_S Reserved

 NUC501 IP Programming Guide

- 18 -

7 6 5 4 3 2 1 0

UART_S APU_S USB_S HCLK_S

Clock Divider Register1 (CLKDIV1)

Register Address R/W Description Reset Value

CLKDIV1 CLK_BA_+ 18 R/W Clock Divider Number Register 0x0000_0000

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

ADC_N

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

Reserved

2.6. SRAM Controller

The SRAM controller is design for program code and data storage. It‟s an AHB slave and SRAM size is up

to 32KB. This 32KB memory is separated into 16 memory block and the size of each memory block is

2KB. Each memory block could be randomly mapped to any 2KB space of 0x0000_0000 ~ 0x1FFF_FFFF

of system memory by modifying the control register. Each 2KB memory block could also be disabled

individually by modifying control register.

In default, these 16*2KB memory blocks are all enabled and mapped to 0x0000_0000 ~ 0x0000_7FFF

sequentially. There are 2 features list as following

 Support maximum SRAM size is 32KB that cascade 16 banks SRAM.

 Support random memory address mapping in 2KB space of 0x0000_0000 ~ 0x1FFF_FFFF of

system memory.

 NUC501 IP Programming Guide

- 19 -

2.7. Power Manager Mode

The NUC501 is designed with special care to minimize the power consumption while allowing for the

flexibility to reach for high performance. It includes the clock gating, variable frequency control for

individual IP‟s, and bus control to reduce signal toggle. Besides, the NUC501 can be further operated

under different power-saving modes: idle, power down with RTC active, and power down mode. The

following figure is the control sequence to enter power down mode or wake up from GPIO. Due to

NUC501 only has SRAM, system can enter power down mode directly without switching to external clock.

PWRCON[XTAL_EN] = 0, system enter power down mode. If system is in power down mode, a GPIO

event can wake up the system. However, the system clock may be unstable. PWRCON[Pre-Scale] sets

time between wake-up to system receiving the stable clock.

Register Address R/W Description Reset Value

PWRCON CLK_BA + 00 R/W System Power Down Control Register 0x00FF_FF03

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Pre-Scale[15:8]

15 14 13 12 11 10 9 8

Pre-Scale[7:0]

7 6 5 4 3 2 1 0

Reserved INT_EN INTSTS XIN_CTL XTAL_EN

Normal Mode

Clock source from PLL

Power Saving Mode

Clock source from X‟TAL

Power down

GPIO event

 NUC501 IP Programming Guide

- 20 -

3. Advanced Interrupt Controller (AIC)

3.1. Overview

An interrupt temporarily changes the sequence of program execution to react to a particular event such as

power failure, watchdog timer timeout, transmit/receive request from Serial Interface (UART or SPI)

Controller, and so on. The ARM processor provides two modes of interrupt, the Fast Interrupt

(FIQ) mode for critical session and the Interrupt (IRQ) mode for general purpose. The IRQ

exception is occurred when the nIRQ input is asserted. Similarly, the FIQ exception is occurred when the

nFIQ input is asserted. The FIQ has privilege over the IRQ and can preempt an ongoing IRQ. It is possible

to ignore the FIQ and the IRQ by setting the F and I bits in the current program status register

(CPSR).

The NUC501 incorporates the advanced interrupt controller (AIC) that is capable of dealing

with the interrupt requests from a total of 32 different sources. Currently, 31 interrupt sources are defined.

Each interrupt source is uniquely assigned to an interrupt channel.

The advanced interrupt controller includes the following features:

 AMBA APB bus interface

 External interrupts can be programmed as either edge-triggered or level-sensitive

 External interrupts can be programmed as either low-active or high-active

 Has flags to reflect the status of each interrupt source

 Individual mask for each interrupt source

 Proprietary 8-level interrupt scheme to ease the burden from the interrupt

 Priority methodology is adopted to allow for interrupt daisy-chaining

 Automatically masking out the lower priority interrupt during interrupt nesting

 Automatically clearing the interrupt flag when the external interrupt source is programmed to be

edge-triggered.

 NUC501 IP Programming Guide

- 21 -

3.2. Block Diagram

AIC Controller

Recorder EncoderIRQ Sources

APB BUS

nFIQ

nIRQ

3.3. Interrupt Source

Channel
Name SCR Source

Reset

(default)

level

1 WDT_INT SCR1[15:8] Watch Dog Timer Interrupt Low

2 Reserved Reserved Reserved Low

3 INT_GPIO0 SCR1[31:24] GPIO Interrupt0 Low

4 INT_GPIO1 SCR2[7:0] GPIO Interrupt1 Low

5 INT_GPIO2 SCR2[15:8] GPIO Interrupt2 Low

6 INT_GPIO3 SCR2[23:16] GPIO Interrupt3 Low

7
INT_APU SCR2[31:24]

Audio Processing Unit

Interrupt

Low

 NUC501 IP Programming Guide

- 22 -

8 Reserved Reserved Reserved Low

9 Reserved Reserved Reserved Low

10 INT_ADC SCR3[23:16] AD Converter Interrupt Low

11 INT_RTC SCR3[31:24] RTC Interrupt Low

12 INT_UART0 SCR4[7:0] UART-0 Interrupt Low

13 INT_UART1 SCR4[15:8] UART-1 Interrupt Low

14 INT_TMR1 SCR4[23:16] Timer-1 Interrupt Low

15 INT_TMR0 SCR4[31:24] Timer-0 Interrupt Low

16 Reserved Reserved Reserved Low

17 Reserved Reserved Reserved Low

18 Reserved Reserved Reserved Low

19 INT_USB SCR5[31:24] USB Device Interrupt(Notes) Low

20 Reserved Reserved Reserved Low

21 Reserved Reserved Reserved Low

22 INT_PWM0 SCR6[23:16] PWM Interrupt0 Low

23 INT_PWM1 SCR6[31:24] PWM Interrupt1 Low

24 INT_PWM2 SCR7[7:0] PWM Interrupt2 Low

25 INT_PWM3 SCR7[15:8] PWM Interrupt3 Low

26 INT_I2C SCR7[23:16] I2C Interface Interrupt Low

27 INT_SPIMS
SCR7[31:24]

SPI (Master/Slave) Serial

Interface Interrupt

Low

28 Reserved Reserved Reserved Low

29 INT_PWR SCR8[15:8] System Wake-Up Interrupt Low

30 INT_SPI_ROM SCR8[23:16] SPI ROM Interrupt Low

31 Reserved Reserved Reserved Low

 NUC501 IP Programming Guide

- 23 -

3.4. Registers

Register R/W Description Reset Value

Base Address 0xB800_2000

AIC_SCR1 AIC_BA+000 R/W Source Control Register 1 0x4747_4747

AIC_SCR2 AIC_BA+004 R/W Source Control Register 2 0x4747_4747

AIC_SCR3 AIC_BA+008 R/W Source Control Register 3 0x4747_4747

AIC_SCR4 AIC_BA+00C R/W Source Control Register 4 0x4747_4747

AIC_SCR5 AIC_BA+010 R/W Source Control Register 5 0x4747_4747

AIC_SCR6 AIC_BA+014 R/W Source Control Register 6 0x4747_4747

AIC_SCR7 AIC_BA+018 R/W Source Control Register 7 0x4747_4747

AIC_SCR8 AIC_BA+01C R/W Source Control Register 8 0x4747_4747

AIC_IRSR AIC_BA+100 R Interrupt Raw Status Register 0x0000_0000

AIC_IASR AIC_BA+104 R Interrupt Active Status Register 0x0000_0000

AIC_ISR AIC_BA+108 R Interrupt Status Register 0x0000_0000

AIC_IPER AIC_BA+10C R Interrupt Priority Encoding Register 0x0000_0000

AIC_ISNR AIC_BA+110 R Interrupt Source Number Register 0x0000_0000

AIC_IMR AIC_BA+114 R Interrupt Mask Register 0x0000_0000

AIC_OISR AIC_BA+118 R Output Interrupt Status Register 0x0000_0000

Reserved Reserved Reserved Undefined

AIC_MECR AIC_BA+120 W Mask Enable Command Register Undefined

AIC_MDCR AIC_BA+124 W Mask Disable Command Register Undefined

AIC_SSCR AIC_BA+128 W Source Set Command Register Undefined

AIC_SCCR AIC_BA+12C W Source Clear Command Register Undefined

AIC_EOSCR AIC_BA+130 W End of Service Command Register Undefined

AIC_TEST AIC_BA+134 W/R ICE/Debug mode Register 0x0000_0000

 NUC501 IP Programming Guide

- 24 -

3.5. Function Description

3.5.1. Interrupt Channel, Priority and Source Type

An 8-level priority encoder controls the nIRQ line. Each interrupt source belongs to priority group between

of 0 to 7. Group 0 has the highest priority and group 7 the lowest. When more than one unmasked interrupt

channels are active at a time, the interrupt with the highest priority is serviced first. If all active interrupts

have equal priority, the interrupt with the lowest interrupt source number is serviced first.

It means:

 Level 0 > Level 1 > Level 2 > Level 3 > Level 4 > Level 5 > Level 6 > Level 7. The interrupt

level was determined AIC_SCRXX[PRIORITY]

 Channel 1 > Channel 2 > Channel 3 >…> Channel 30 > Channel 31 if all interrupts at the same

level. Interrupt channel 1, channel 2… channel31 maps to AIC_SCR1, AIC_SCR2…

AIC_SCR31 respectively.

 Level 0 is FIQ interrupt. Other levels interrupt are IRQ interrupt.

 Interrupt channel 0 was reserved.

SRCTYPE [7:6]: Interrupt Source Type
Whether an interrupt source is considered active or not by the AIC is subject to the settings of this field.

Interrupt sources other than nIRQ0, nIRQ1, nIRQ2, nIRQ3, should be configured as level sensitive during

normal operation unless in the testing situation.

AIC Source Control Registers (AIC_SCR1 ~ AIC_SCR31)

Register Address R/W Description Reset Value

 AIC_SCR1 AIC_BA+0x004 R/W Source Control Register 1 0x4747_4747

 AIC_SCR2 AIC_BA+0x008 R/W Source Control Register 2 0x4747_4747

  

  

  

  

  

AIC_SCR8 AIC_BA+0x01C R/W Source Control Register 31 0x4747_4747

31 30 29 28 27 26 25 24

SRCTYPE (Channel 4n+3) RESERVED PRIORITY (Channel 4n+3)

23 22 21 20 19 18 17 16

SRCTYPE (Channel 4n+2) RESERVED PRIORITY (Channel 4n+2)

15 14 13 12 11 10 9 8

SRCTYPE (Channel 4n+1) RESERVED PRIORITY (Channel 4n+1)

SRCTYPE [7:6] Interrupt Source Type

0 0 Low-level Sensitive

0 1 High-level Sensitive

1 0 Negative-edge Triggered

1 1 Positive-edge Triggered

 NUC501 IP Programming Guide

- 25 -

7 6 5 4 3 2 1 0

SRCTYPE (Channel 4n) RESERVED PRIORITY (Channel 4n)

There are 4 channels in one control register where n =0 to 7. The interrupt source table reference section

3.3 Interrupt source.

The current priority level is defined as the priority level of the interrupt with the highest priority at the time

the register AIC_IPER is read. In the case when a higher priority unmasked interrupt occurs while an

interrupt already exits, there are two possible outcomes depending on whether the AIC_IPER has been

read.

 If the processor has already read the AIC_IPER and caused the NIRQ line to be de-asserted, then the

NIRQ line is reasserted. When the processor has enabled nested interrupts and reads the AIC_IPER

again, it reads the new, higher priority interrupt vector. At the same time, the current priority level is

updated to the higher priority.

If the AIC_IPER has not been read after the NIRQ line has been asserted, then the processor will read the

new higher priority interrupt vector in the AIC_IPER register and the current priority level is updated.

When the End of Service Command Register (AIC_EOSCR) is written, the current interrupt level is

updated with the last stored interrupt level from the stack (if any). Therefore, at the end of a higher priority

interrupt, the AIC returns to the previous state corresponding to the preceding lower priority interrupt

which had been interrupted.

3.5.2. Fake Interrupt

When the AIC asserts the nIRQ line, the processor enters interrupt mode and the interrupt handler reads the

AIC_IPER, it may happen that AIC de-asserts the nIRQ line after the processor has taken into account the

nIRQ assertion and before the read of the AIC_IPER.

This behavior is called a fake interrupt.

The AIC is able to detect these fake interrupts and returns all zero when AIC_IPER is read. The same

mechanism of fake interrupt occurs if the processor reads the AIC_IPER (application software or ICE)

when there is no pending-interrupt. The current priority level is not updated in this situation. Hence, the

AIC_EOSCR shouldn‟t be written.

3.5.3. Interrupt Handling

When the NIRQ line is asserted, the interrupt handler must read the AIC_IPER as soon as possible. This

can de-assert the NIRQ request to the processor and clears the interrupt if it is programmed to be edge

triggered. This allows the AIC to assert the NIRQ line again when a higher priority unmasked interrupt

occurs.

The AIC_EOSCR (End of Service Command Register) must be written at the end of the interrupt service

routine. This permits pending interrupts to be serviced.

 NUC501 IP Programming Guide

- 26 -

3.5.4. Interrupt Masking

The AIC provides a set of registers to mask individual interrupt channel. The Mask Enable Command

Register (AIC_MECR) is used to enable interrupt. Write 1 to any bit of AIC_MECR will enable the

corresponding interrupt channel. Oppositely, the Mask Disable Command Register (AIC_MDCR) is

used to disable the interrupt. Write 1 to any bit of AIC_MDCR will disable the corresponding interrupt

channel. Write 0 to a bit of AIC_MECR or AIC_MDCR has no effect. Therefore, the device driver can

arbitrarily change these two registers without keeping their original values. If it‟s necessary, the device

driver can read the Interrupt Mask Register (AIC_IMR) to know whether the interrupt channel is

enabled or disabled. If the interrupt channel is enabled, its corresponding bit is read as 1, otherwise 0.

3.5.5. Interrupt Clearing and Setting

For the interrupt channels that are edge-triggered, the device driver must clear AIC status to de-assert the

interrupt request. To clear AIC status, the device driver may write Source Clear Command Register

(AIC_SCCR). Write 1 to any bit of AIC_SCCR will clear the corresponding interrupt. As soon as the

device‟s interrupt status was cleared, the AIC de-asserts the interrupt request.

The register Source Set Command Register (AIC_SSCR) is used to active an interrupt channel when it is

programmed to edge-triggered. Write 1 to any bit of AIC_SSCR will set the corresponding interrupt. This

feature is useful in auto-testing or software debugging.

3.5.6. ICE/Debug Mode

This mode allows reading of the AIC_IPER without performing the associated automatic operations. This

is necessary when working with a debug system. When an ICE or debug monitor reads the AIC user

interface, the AIC_IPER can be read. This has the following consequences in normal mode:

If there is no enabled pending interrupt, the fake vector will be returned.

If an enabled interrupt with a higher priority than the current one is pending, it will be stacked.

In the second case, an End-of-Service command would be necessary to restore the state of the AIC. This

operation is generally not performed by the debug system. Therefore, the debug system would become

strongly intrusive, and could cause the application to enter an undesired state.

This can be avoided by using ICE/Debug Mode. When this mode is enabled, the AIC performs interrupt

stacking only when a write access is performed on the AIC_IPER. Hence, the interrupt service routine must

write to the AIC_IPER (any value) just after reading it. When AIC_IPER is written, the new status of AIC,

including the value of interrupt source number register (AIC_ISNR), is updated with the value that is kept

at previous reading of AIC_IPER, the debug system must not write to the AIC_IPER as this would cause

undesirable effects.

The following table shows the main steps of an interrupt and the order in which they are performed

according to the mode:

Action
Normal

Mode

ICE/Debug

Mode

Calculate active interrupt Read AIC_IPER Read AIC_IPER

Determine and return the vector of the active

interrupt
Read AIC_IPER Read AIC_IPER

 NUC501 IP Programming Guide

- 27 -

Push on internal stack the current priority level Read AIC_IPER Write AIC_IPER

Acknowledge the interrupt (Note 1) Read AIC_IPER Write AIC_IPER

No effect (Note 2) Read AIC_IPER

Notes:

NIRQ de-assertion and automatic interrupt clearing if the source is programmed as level sensitive.

Note that software which has been written and debugged using this mode will run correctly in normal mode

without modification. However, in normal mode writing to AIC_IPER has no effect and can be removed to

optimize the code.

3.5.7. FIQ/IRQ Handler Control Sequence

AIC_IPER

== 0

Read AIC_ISR

Read AIC_ISNR

User interrupt handler

AIC_EOSCR=1

Yes

No

Start

End

Just return when fake
interrupting

Get Interrupt Source

Handle the interrupt and clear IP’s
interrupt status

End the interrupt

 NUC501 IP Programming Guide

- 28 -

4. SPI Synchronous Serial Interface Controller

4.1. Overview

The SPI Synchronous Serial Interface performs a serial-to-parallel conversion on data characters received

from the peripheral, and a parallel-to-serial conversion on data characters received from CPU. This

interface can drive up to 2 external peripherals and is seen as the master. It can generate an interrupt signal

when data transfer is finished and can be cleared by writing 1 to the interrupt flag. The active level of

device/slave select signal can be chosen to low active or high active, which depends on the peripheral it‟s

connected. Writing a divisor into DIVIDER register can program the frequency of serial clock output. This

master core contains four 32-bit transmit/receive buffers, and can provide burst mode operation. The

maximum bits can be transmitted/received is 32 bits, and can transmit/receive data up to four times

successive.

There are two chip select pins exists in SPIM. These chip select pins are dedicated to SPI memory and SPI

master function that are supported by SPIM engine. These functions are also named as SPIM0 and SPIM1.

SPI memory and SPI master map to chip select pin 0 and chip select pin1 respectively. SPI memory has

dedicated pin for chip select. SPI master must use one GPIO to emulate chip select. However, only one

function can work in the same times.

SPI memory supports 3 sub functions. The first is command-read and command-write. The second is

DMA-read and DMA-write. The third is direction memory mapping mode. The SPI master only supports

command-read and command-write.

The chip also supports cipher function to encrypt and decrypt the ROM code through DMA and DMM

sub-function. User can use it without any extra software effect. The detail for cipher should not be

described in the document.

Function

Sub-Function

Interface SPI Bus

SPI Memory

CMD DMA DMM

Cipher

SPI Master

CMD

There are 4 main functions that supported in SPIM engine. They are

 NUC501 IP Programming Guide

- 29 -

 Command mode – Programming/Reading SPI flash through command mode. However, the

cipher, encryption and decryption, is not supported in the mode.

 DMA mode – Programming/Reading SPI flash through DMA mode. The cipher is supported in

the mode.

 DMM mode – Reading SPI flash through DMM mode. CPU can fetch code in the mode. The

cipher function is also supported in the mode.

 Cipher – The function performances the encryption or decryption based on the key1, key2,

NUC501 IBR programming guide.

4.2. Block Diagram

The block diagram of SPI Serial Interface controller is shown as following:

Pin descriptions:

spi_sclk: SPI serial clock output pin

spi_ss: SPI slave/device select signal output

spi_so: SPI serial data output pin (to slave device)

spi_si: SPI serial data input pin (from slave device)

A
H

B
 in

te
rfa

c
e

Clock

generator

IO

registers

TX/RX

buffer

SPI core logic

spi_sclk

spi_so

spi_si

spi_ss

 NUC501 IP Programming Guide

- 30 -

PINspi_sclk_o

spi_sclk_i

DIVIDER [SCLK_IN_DLY]

DIVIDER[SCLK_IN_DLY] is used to control the delay of spi_sclk_i

4.3. Registers

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register Address R/W/C Description Reset Value

Base Address: 0xB100_7000

CNTRL SPI_BA + 0x00 R/W Control and Status Register 0x0000_0004

DIVIDER SPI_BA + 0x04 R/W Clock Divider Register 0x0000_0000

SSR SPI_BA + 0x08 R/W Slave Select Register 0x0000_0000

Reserved SPI_BA + 0x0C N/A Reserved 0xFFFF_FFFF

Rx0 SPI_BA + 0x10 R Data Receive Register 0 0x0000_0000

Rx1 SPI_BA + 0x14 R Data Receive Register 1 0x0000_0000

Rx2 SPI_BA + 0x18 R Data Receive Register 2 0x0000_0000

Rx3 SPI_BA + 0x1C R Data Receive Register 3 0x0000_0000

Tx0 SPI_BA + 0x20 R/W Data Transmit Register 0 0x0000_0000

Tx1 SPI_BA + 0x24 R/W Data Transmit Register 1 0x0000_0000

Tx2 SPI_BA + 0x28 R/W Data Transmit Register 2 0x0000_0000

Tx3 SPI_BA + 0x2C R/W Data Transmit Register 3 0x0000_0000

AHB_ADDR SPI_BA + 0x30 R/W AHB memory address 0x0000_0000

CODE_LEN SPI_BA + 0x34 R/W Boot code length 0x0000_0000

Reserved SPI_BA + 0x38 N/A Reserved 0xFFFF_FFFF

 NUC501 IP Programming Guide

- 31 -

Reserved SPI_BA + 0x3C N/A Reserved 0xFFFF_FFFF

SPI_ADDR SPI_BA + 0x40 N/A SPI Flash Start Address 0x0000_0000

OTP_CNTRL SPI_BA + 0x44 N/A OTP Control Register 0xFFFF_FFFF

OTP_PROG SPI_BA + 0x48 N/A OTP Program Register 0xFFFF_FFFF

Reserved SPI_BA + 0x4C N/A Reserved 0xFFFF_FFFF

OTP_DISAB

LE
SPI_BA + 0x50 N/A OTP Security Register 0xFFFF_FFFF

NOTE1: When software programs CNTRL, the GO_BUSY bit should be written last.

4.4. Function Description

4.4.1. Command mode

If users want to access a device with following specifications:

 Data bit latches on positive edge of serial clock

 Data bit drives on negative edge of serial clock

 Data is transferred with the MSB first

 Only one byte transmits/receives in a transfer

 Chip select signal is active low

However, the mode does not support cipher function. If you want to use cipher, please use DMA mode to

access the SPI flash.

You should do following actions basically (you should refer to the specification of device for the detailed

steps):

 Write a divisor into DIVIDER to determine the frequency of serial clock.

 Write in SSR, set SSR[ASS] = 0, SSR[SS_LVL] = 0 and SSR[0] or SSR[1] to 1 to activate the

device users want to access. To set or clear the SSR[0] and SSR[1] depends on the active level

of chip select that you want to access.

When transmit (write) data to device:

 Write the data you want to transmit into Tx0[7:0] / TX[31:0].

 Write the CNTRL[Tx_NUM] and CNTRL[Tx_BIT_LEN] for the transfer length.

 CNTRL[Tx_NEG] = 1 for negative edge to transmit data.

 Set CNTRL[GO_BUSY] = 1 to drive data and clock out.

When receive (read) data from device:

 Write CNTRL, Rx_NEG = 0, Tx_NEG = 1, Tx_BIT_LEN = 0x08, Tx_NUM = 0x0, LSB = 0,

SLEEP = 0x0 (or 0x1 or 0x2 depend on the speed of SPI) and GO_BUSY = 1 to start the

transfer. Waiting for interrupt (if IE = 1) or polling the GO_BUSY bit until it turns to 0.

 Read out the received data from Rx0.

 Go to point 3 to continue data transfer or set SSR[0] or SSR[1] to 0 to inactivate the device.

 NUC501 IP Programming Guide

- 32 -

4.4.2. DMA mode

If you want to access SPI flash with cipher function. You can use DMA mode to access SPI flash.

DMA read mode:

 Set the target memory address in AHB_ADDR register.

 Set the boot code length which read from step 1 into CODE_LEN register

 Set the SPI start address in SPI_ADDR register.

 Set SSR register to select spi slave. (no support ASS in dma mode)

 Set the READ command (0x03) and 3-Byte SPI Start Address into Tx0, Tx1, Tx2, Tx3. (It is

same as SPI_ADDR)

 Set SPI_CNTRL = 0x1a0345.for control information.

 Wait code read finish. Wait INT.

 Set SSR register to un-select spi slave. (no support ASS in dma mode)

For other read mode:

 Fast read (0x0b), set read command (0x0b) into Tx0, & CNTRL = 0x0b1a0b45.

 Fast dual read (0x3b), set read command (0x3b) into Tx0, & CNTRL = 0x3b1a0b45.

DMA write mode: (Be sure the SPI flash is blank. To erase it if the SPI flash is not blank through

command mode)

 Send Write Enable command to SPI flash

 Set the source memory address in AHB_ADDR

 Set the code length into CODE_LEN register

 Set the spi start address in SPI_ADDR

 Set SSR register to select spi slave. (no support ASS in dma mode)

 Set the Page Program command (0x02) and 3-Byte SPI Start Address into Tx0, Tx1, Tx2, Tx3.

(It is same as SPI_ADDR)

 Set CNTRL = 0x160345 for control information.

 Wait code write finish. Wait INT

 Set SSR register to un-select spi slave. (no support ASS in dma mode)

 Check the BUSY status in SPI Flash

4.4.3. DMM mode

If you want to run code or read SPI flash without any extra effect. You can set the SPIM to DMM mode.

The DMM mode will do serial to parallel conversion automatically. You can access it as ROM. However,

the speed of access is more slowly than ROM because the hardware must transform the serial to parallel

conversion.

 AHB master function (CNTRL[DIS_M] high), disable flash data read (CNTRL[F_DRD] low),

set sleep interval to 1 (CNTRL[SLEEP] = 4‟h1) and set SPI flash read

command(CNTRL[SPI_MODE] 0x03

 Standard Read: Set CNTRL = 0x0332_1344 , Fast Read: Set CNTRL = 0x0b32_1344, Fast

dual Read: Set CNTRL = 0x3b32_1344

 If the SPI clock speed up to 72MHz. Fine tuning the following register bits

 Set the CNTRL[SLEEP] = 4‟h2

 Divider[SCLK_IN_DLY] = 0x07. Divider[IDLE_CNT] = 0xF.

 NUC501 IP Programming Guide

- 33 -

4.4.4. Fetch code from SPI memory

As power on, internal boot ROM (IBR) is default map to 0. IBR will copy first 16K bytes ROM code that

stored in SPI flash to RAM. Programmer must initial the SPIM to DMM mode after boot from IBR if CPU

will fetch the code from SPI flash. The memory map after booted from IBR lists as following figure.

And scatter loading descriptor file may architecture the program code as following scheme. The scatter

loading descriptor file defines: one load region (FLASH) and four execution regions (FLASH, 32bitRAM,

HEAP and STACK). The entire program is placed in FLASH which resides at 0x40000000. On power on,

IBR maps to address 0 and it will copy the first 16K bytes of FLASH to RAM. Then IBR will remap the

SRAM to 0 then execute a CPU reset. CPU will fetch the aliased copy code to initialize the SPIM to DMM

mode. After the initial phase, the initialization code in the C library copies the RO and RW execution

regions from their load address to their execution address before create any zero-initialized areas. Detail

reference the document-ARM Developer Suite Developer Guide.

0x40000000

0x20000000

0x0

0x800

0

… ;Init stack

LDR r0, SPIM_PIN_REG ;Set Pad function for SPIM0

LDR r1, SPIM_PIN_CNT

STR r1, [r0]

LDR r0, SPIM_MODE_REG ;Set SPIM0 to DMM mode

LDR r1, SPIM_MOD_CNT

STR r1, [r0]

LDR r0, SPIM_DIV_REG ;Set Divider of SPIM

LDR r1, SPIM_DIV_CNT

STR r1, [r0]

LDR r0, SPIM_ACS_REG ;Set Auto chip select

LDR r1, SPIM_ACS_CNT

STR r1, [r0]

LDR r15, ROMADDR ;Long jump to flash address

SPIM_PIN_REG DCD 0xb1000034

SPIM_PIN_CNT DCD 0x00000140

SPIM_MODE_REG DCD 0xb1007000

SPIM_MODE_CNT DCD 0x0b322344

SPIM_DIV_REG DCD 0xb1000034

SPIM_DIV_CNT DCD 0x00000140

SPIM_ACS_REG DCD 0xb1007000

SPIM_ACS_CNT DCD 0x0b322344

ROMADDR DCD ROM_CODE_ADDR

ROM_CODE_ADDR

B __main

Init.s

IBR

SRAM

SPI Flash

 NUC501 IP Programming Guide

- 34 -

4.4.5. Application limitations

There are many limitations for SPIM0 and SPIM1 work together. These limitations are

 SPIM0 and SPIM1 can not work in the same time due to the limitations of hardware. They share

the same registers and hardware IP. So the SPI memory and SPI master must work time-sharing.

 If programmer wants to programming SPIM0 or SPIM1. Programmer must set the program

code in the RAM area.

 The SPI master should be useless if fetch code from the SPI memory. It means programmer can

not access device through SPI master unless run fetch code from RAM.

FLASH 0x40000000

{

 FLASH 0x40000000

 {

 init.o (Init, +First)

 * (+RO)

 }

 32bitRAM 0x0000

 {

 vectors.o (Vect, +First)

 * (+RW,+ZI)

 }

 HEAP +0 UNINIT

 {

 heap.o (+ZI)

 }

 STACK 0x8000 UNINIT

 {

 stack.o (+ZI)

 }

}

 NUC501 IP Programming Guide

- 35 -

5. Analog to Digital Converter (ADC)

5.1. Overview

The ADC module is 10 bit analog to digital converter, it contains successive 8 channel analog input for

conversion, the touch screen interface for 4/5/8-wire analog resistive touch screen, 4-level voltage detector.

The ADC needs around 34 cycles to convert one sample, while the maximum clock of ADC is 17 MHz, so

maximum conversion rate is 500K (if one cycle per one clock, then 25M/34 = 500K) sample/sec, reality

the conversion rate about 300K to guarantee digital data correcting (experimental value).

5.2. Block Diagram

5.3. Registers

APB

Control
Register

8 to 1
MUX

Vin0
Vin1
Vin2
Vin3
Vin4
Vin5
Vin6
Vin7

Switch
Box

AVDD
AVSS

INT

Low voltage detector

Ref+

Battery Voltage

Ref -

10-bit

 ADC

 NUC501 IP Programming Guide

- 36 -

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register Address R/W Description Reset Value

ADC_BA = 0xB800_1000

ADC_CON ADC_BA+0x000 R/W ADC control register 0x0000_0000

ADC_DLY ADC_BA+0x008 R/W ADC delay register 0x0000_0000

LV_CON ADC_BA+0x014 R/W Low Voltage Detector Control register 0x0000_0000

LV_STS ADC_BA+0x018 R/W Low Voltage Detector Status register 0x0000_0000

AUDIO_CON ADC_BA+0x01C R/W Audio control register 0x0000_0000

AUDIO_BUF0 ADC_BA+0x020 R/W Audio data register 0 0x0000_0000

AUDIO_BUF1 ADC_BA+0x024 R/W Audio data register 1 0x0000_0000

AUDIO_BUF2 ADC_BA+0x028 R/W Audio data register 2 0x0000_0000

AUDIO_BUF3 ADC_BA+0x02C R/W Audio data register 3 0x0000_0000

5.4. Function Description

5.4.1. ADC normal mode operation

The normal conversion mode operates for general purpose ADC. The ADC registers control the 8 to 1

MUX to select an analog input channel. Specifically, both AIN0 and AIN1 are dedicated for audio

recording and will be introduced in the next section.

Before converting the ADC data, the ADC engine clock must be given first. The ADC engine clock is

given by

)1_(

_



NADC

Freq
Freq PLL

kEngineClocADC (5.4.1.1)

where FreqPLL is the PLL output frequency and ADC_N is the value of bits[24 16] of Clock Divider

Register 1, CLKDIV1. As for the conversion rate, it is determined by

34*}2*]1)2/_({[

_

_



DIVADCround

Freq
Freq

kEngineClocADC

eConvertRatADC (5.4.1.2)

where ADC_DIV must be except 0 or 1. When ADC_DIV is equal to 0 or 1, FreqADC_ConvertRate =

FreqADC_EngineClock / 34.

Additionally, the conversion rate must be determined first, we can get only one converted data when to

enable ADC conversion. That is, the conversion is periodic. The procedure is described as follows,

 NUC501 IP Programming Guide

- 37 -

1. Enable ADC engine clock

 outp32(APBCLK, inp32(APBCLK) | ADC_CK_EN);

2. Reset ADC IP

 outp32(IPRST, inp32(IPRST) | IPRST_ADC_RST); // Reset ADC IP

 outp32(IPRST, inp32(IPRST) & ~IPRST_ADC_RST);

 outp32(ADC_CON, ADC_RST); // ADC software reset

 outp32(ADC_CON, (inp32(ADC_CON)&~ADC_RST));

3. Given ADC engine clock by Eq. (5.4.1.1)

4. Given conversion rate by Eq. (5.4.1.2)

5. Determine the converted channel

6. Enable to convert ADC

 outp32(ADC_CON, inp32(ADC_CON) | ADC_CON_ADC_EN);

7. Check if conversion to be finished

 while((inp32(ADC_CON)&ADC_INT)==0);

8. Get the converted data

9. Clear ADC_INT flag and repeat steps 6 – 9

5.4.2. Audio recording

SARADC

ADC control

Decimation
Filter

A
P
B

Mic+ (Ain0)

Mic- (Ain1)

Ain2
Ain3

Ain4
Ain5
Ain6
Ain7

5K

5K

50K

50K

Control Signal

The audio recording path can convert the analog data to digital one by means of the ADC hardware. When

the ADC is switched to audio recording mode, other ADC data-conversion function can‟t be operated. The

audio sampling rate is determined by

 NUC501 IP Programming Guide

- 38 -

1280

_ kEngineClocADC

teSamplingRa

Freq
Freq  (4.4.2.1)

The procedure for audio recording is described as follows.

1. Enable ADC engine clock

 outp32(APBCLK, inp32(APBCLK) | ADC_CK_EN);

2. Reset ADC IP

 outp32(IPRST, inp32(IPRST) | IPRST_ADC_RST); // Reset ADC IP

 outp32(IPRST, inp32(IPRST) & ~IPRST_ADC_RST);

 outp32(ADC_CON, ADC_RST); // ADC software reset

 outp32(ADC_CON, (inp32(ADC_CON)&~ADC_RST));

3. Given ADC engine clock by Eq. (5.4.1.1)

4. Given sampling rate by Eq. (5.4.2.1)

5. Given AGC settings if to be enabled

 Set period time, attack time, recovery time and hold time in LV_STS register

6. Given recording volume

 Set bits[8:3] of AUDIO_CON register

7. Select recording mode

 Mode_00  AUD_INT interrupt bit is set when one recorded sample is finished.

 Mode_01  AUD_INT interrupt bit is set when two recorded samples are finished.

 Mode_10  AUD_INT interrupt bit is set when four recorded samples are finished.

 Mode_11  AUD_INT interrupt bit is set when eight recorded samples are finished.

8. Start audio recording

 Set bit[1] of AUDIO_CON register

9. Wait recorded data has been finished

 Wait AUD_INT interrupt bit to be set

10. Read the recorded data from AUDIO_BUF_0/1/2/3 buffer registers

 Mode_00  one sample from bits[15:0] of AUDIO_BUF_0

 Mode_01  two samples from bits[31:16] and bits[15:0] of AUDIO_BUF_0,

individually

 Mode_10  four samples from AUDIO_BUF_0 and AUDIO_BUF_1, individually

 Mode_11  four samples from AUDIO_BUF_0, AUDIO_BUF_1, AUDIO_BUF_2 and

AUDIO_BUF_3, individually

11. Clear AUD_INT interrupt flag and repeat steps 9 -11

5.4.3. Low voltage detection

The architecture of the voltage detector is shown as in the following figure. By controlling the switch, sw1

~ sw8, the ADC can do the voltage detection from V1 to V8. The voltage will not be influenced by the

change of supply voltage or temperature.

 NUC501 IP Programming Guide

- 39 -

Vin7

Bandgap

Voltage

Reference

Result_flag

sw8

sw7

sw6

sw5

V8

V7

V5

V6

V4

V3

V1

V2

sw4

sw3

sw2

sw1

The low voltage detection source is only from Vin7 pin. The procedure of detection is described as

follows.

1. Enable ADC engine clock

 outp32(APBCLK, inp32(APBCLK) | ADC_CK_EN);

2. Reset ADC IP

 outp32(IPRST, inp32(IPRST) | IPRST_ADC_RST); // Reset ADC IP

 outp32(IPRST, inp32(IPRST) & ~IPRST_ADC_RST);

 outp32(ADC_CON, ADC_RST); // ADC software reset

 outp32(ADC_CON, (inp32(ADC_CON)&~ADC_RST));

3. Enable LVR detection

 Enable bit [3] of LV_CON and set bits[2:0] of LV_CON to select the switch settings.

 Wait LVD_INT interrupt flag to be set.

 When the input voltage is lower than the target voltage, LVD_INT interrupt flag, bit-19 of

ADC_CON will be set.

 NUC501 IP Programming Guide

- 40 -

6. Analog Processing Unit (APU)

6.1. Overview

The main purpose of Audio Processing Unit (APU) is used to playback the audio data (PCM format) which

CPU decoded and stored in global RAM. The APU built in a monophonic DAC with 16-bit resolution per

channel which supports speakerphone output and monophonic output for headphone. The APU is

composed of an AHB Master and built in FIFO and timer.

Features

 Monophonic Digital to Analog Converter with 16-bit resolution

 Supports speakerphone output and monophonic output for headphone

 Read Audio PCM data from global RAM

 Built in FIFO with length 16Bytes * 2

 Built in 10-band equalizer

 Built in timer to generate conversion trigger signal automatically

6.2. Block Diagram

 NUC501 IP Programming Guide

- 41 -

6.3. Registers

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register Address R/W Description Reset Value

APU_BA = 0xB100_8000

APUCON APU_BA + 0x00 R/W APU Control Register 0x0000_0000

PARCON APU_BA + 0x04 R/W Parameter Control Register 0x0000_0001

PDCON APU_BA + 0x08 R/W Power Down Control Register 0x0001_0000

APUINT APU_BA + 0x0C R/W APU Interrupt Register 0x0000_0000

RAMBSAD APU_BA + 0x10 R/W RAM Base Address Register 0x0000_0000

THAD1 APU_BA + 0x14 R/W Threshold 1 Address Register 0x0000_0000

THAD2 APU_BA + 0x18 R/W Threshold 2 Address Register 0x0000_0000

CURAD APU_BA + 0x1C R Current Access RAM Address Register 0x0000_0000

EQGAIN0 APU_BA + 0x20 R/W Equalizer Band Gain Register 0 0x7777_7777

EQGAIN1 APU_BA + 0x24 R/W Equalizer Band Gain Register 1 0x000D_0077

APURAMBIST APU_BA + 0x2C R/W APU ram BIST control register 0x0000_0000

6.4. Function Description

6.4.1. Sampling rate control

The APU sampling rate is determined by the APU engine clock. The APU engine clock is given by

)1_(

_



NAPU

Freq
Freq PLL

kEngineClocAPU (6.4.1.1)

where FreqPLL is the PLL output frequency and APU_N is the value of bits[15 8] of Clock Divider Register

0, CLKDIV0. As for the sampling rate, it is determined by

128

_

_

kEngineClocAPU

teSamplingRaAPU

Freq
Freq  (6.4.1.2)

 NUC501 IP Programming Guide

- 42 -

6.4.2. Threshold and DAC control

Threshold Control

The main purpose of APU is used to playback the audio data which CPU decoded and stored in global

RAM. Before to enable APU, both RAM base and two RAM threshold address must be set first. The APU

engine will get the RAM data which between the RAM base and higher threshold address and play to the

16-bit DAC repeatedly.

For example,

RAM base address = 0x1000

Threshold_0 address = 0x1400

Threshold_1 address = 0x1800

The APU engine will play the audio data between 0x1000and 0x1800 repeatedly. Additionally, while the

APU internal counter encounters Threshold_0 or Threshold_1, the corresponding interrupt flag will be set.

Therefore, the user can update the old audio data after the interrupt flag to be set.

DAC Control

The DAC control register, ANA_PD bit of PDCON register, determine if to power down the APU DAC

output or not.

6.4.3. Equalizer control

Three register controls the equalizer function, including bit-24 of PARCON, EQGain0 and EQGain1. First,

we must give the desired values to EQGain0 and EQGain1 registers, and then enable equalizer function by

setting bit-24 of PARCON register.

6.4.4. APU example

The procedure for APU playback is described as follows.

1. Enable APU engine clock

 outp32(AHBCLK, inp32(AHBCLK)|APU_CK_EN);

2. Reset APU engine

 outp32(IPRST, inp32(IPRST)|APU_RST); // Reset APU

 outp32(IPRST, inp32(IPRST)&~APU_RST); // APU normal operation

 outp32(APUCON, inp32(APUCON) | APURST);

 outp32(APUCON, inp32(APUCON) & ~APURST);

3. Given APU engine clock by Eq. (6.4.1.1)

 NUC501 IP Programming Guide

- 43 -

4. Given sampling rate by Eq. (6.4.1.2)

5. Given the base address

 outp32(RAMBSAD, BaseAddress);

6. 6. Given TH1 address

 outp32(THAD1, TH1Address);

7. 7. Given TH2 address

 outp32(THAD2, TH2Address);

8. Enable TH1 and TH2 interrupts if they are necessary

9. Set EQ parameters and enable EQ if they are necessary

10. Start APU audio playback

11. Wait TH1 and TH2 interrupt flags, T1INTS and T2INTs, and update the audio data in the buffer

12. Clear T1INTS and T2INTs interrupt flags

13. Repeat step 11 – 12

 NUC501 IP Programming Guide

- 44 -

7. I2C Synchronous Serial Interface Controller

7.1. Overview

I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange

between devices. The I2C standard is a true multi-master bus including collision detection and arbitration

that prevents data corruption if two or more masters attempt to control the bus simultaneously.

Serial, 8-bit oriented bi-directional data transfers can be made up to 100 k-bit/s in Standard-mode, up to

400 k-bit/s in the Fast-mode, or up to 3.4 M-bit/s in the High-speed mode. Only 100kbps and 400kbps

modes are supported directly. For High-speed mode, special IOs are needed. If these IOs are available and

used, then High-speed mode is also supported.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byte-by-byte

basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB being

transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the high

period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be

held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as

a command (START or STOP).

The I2C Master core includes the following features:

 AMBA APB interface compatible

 Compatible with Philips I2C standard, support master mode

 Multi Master Operation

 Clock stretching and wait state generation

 Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer

 Software programmable acknowledge bit

 Arbitration lost interrupt, with automatic transfer cancellation

 Start/Stop/Repeated Start/Acknowledge generation

 Start/Stop/Repeated Start detection

 Bus busy detection

 Supports 7 bit addressing mode

 Fully static synchronous design with one clock domain

 Software mode I2C

 NUC501 IP Programming Guide

- 45 -

7.2. Block Diagram

Interrupt

Clock

Pre-scale

I/O

Decoder

Registers

Core

Logic

APB Bus
AIC

Clock

Control

PIN

I2C_TOP

7.3. Registers

R: read only, W: write only, R/W: both read and write

Base Address: 0xB800_4000

Register Offset R/W/C Description Reset Value

I2C_BA = 0xB800_4000

CSR I2C_BA+0x00 R/W Control and Status Register 0x0000_0000

DIVIDER I2C_BA+0x04 R/W Clock Pre-scale Register 0x0000_0000

CMDR I2C_BA+0x08 R/W Command Register 0x0000_0000

SWR I2C_BA+0x0C R/W Software Mode Control Register 0x0000_003F

RxR I2C_BA+0x10 R Data Receive Register 0x0000_0000

TxR I2C_BA+0x14 R/W Data Transmit Register 0x0000_0000

NOTE: The reset value of SWR is 0x3F only when SCR, SDR and SER are connected to pull high resistor.

 NUC501 IP Programming Guide

- 46 -

7.4. Functional Descriptions

7.4.1. Limitation

 Byte basis transfer for hardware I2C.

7.4.2. A complete data transfer

7.4.3. START and STOP condition

SDA

SCK

S
START

Condition

P

STOP

Condition

SDA

SCK
S P

1-7 1-7 1-7 8 9 8 9 8 9

START

Condition
ADDRESS R/W ACK DATA ACK DATA ACK STOP

Condition

 NUC501 IP Programming Guide

- 47 -

7.4.4. Acknowledge

SDA

By Transmitter

SCK

From

Master

S
START

Condition

NACK

ACK

SDA

By Receiver

1 2 8 9

 NUC501 IP Programming Guide

- 48 -

7.4.5. Mater read and write

S Slave Address Data R/W

=0
A A Data A/A P

A master-transmitter addresses a slave receiver with 7-bit address.

The transfer direction is not changed

S Slave Address Data R/W

=1
A A Data /A P

A = Acknowledge (SDA

Low)
/A = Not acknowledge (SDA

High)
S = Start

condition

P = Stop

condition

From master to

slave
From slave to

master

A master reads a slave immediately after the first byte.

N bytes

+acknowledge

 NUC501 IP Programming Guide

- 49 -

7.4.6. Example of an I2C-bus configuration using two
micro-controllers

7.4.7. Hardware I2C

Control sequence.

14. Write a value into DIVIDER to determine the frequency of serial clock.

15. Set Tx_NUM = 0x1 and set I2C_EN = 1 to enable I2C core.

16. Write 0xA2 (address + write bit) to Transmit Register (TxR [15:8]) and 0xAC to TxR [7:0].

17. Set START bit and WRITE bit. –– Wait for interrupt or I2C_TIP flag to negate ––

18. Read I2C_RxACK bit from CSR Register, it should be „0‟.

19. Set Tx_NUM = 0x0.

20. Set STOP bit.

SCL

SDA S W ACK

First command sequence

ACK P

Second command sequence

Micro

Controller

A

Micro

Controller

B

Sensor Touch

Panel

ADC

SDA

SCK

 NUC501 IP Programming Guide

- 50 -

Note 1: It has fixed serial clock specify in the between master and slave. The work frequency specify in

register-DIVIDER. Source clock of Hardware I2C is APB clock. The formula of DIVIDER lists as

following.

DIVIDER = APB / (5* Frequency of SCK) - 1;

Note 2: Transfer number specify in register CSR [Tx_NUM].

 Note 3: Transfer temporary buffer. There are 4 bytes temporary buffer for Hardware I2 transfer data.

Case 1: Only data A was transferred

 TX_NUM=0

TXR[3] D

TXR[2] C

TXR[1] B

TXR[0] A

Case 2: Data B was transferred first then data A.

Case 3: Transfer Data C first then data B. Data A was transferred last.

 TX_NUM=0

Case 4: Transferred sequence is Data D, C, B then A.

 TX_NUM=0

TXR[3] D

TXR[2] C

TXR[1] B

TXR[0] A

Note 4: Command.

 Programmer can set register CMDR to generate the STAR, ACK, WRITE or READ and STOP phase.

Please reference register CMDR.

TX_NUM Meaning

0x0 Only one byte is left for transmission.

0x1 Two bytes are left to for transmission.

0x2 Three bytes are left for transmission.

0x3 Four bytes are left for transmission.

TX_NUM=0

TXR[3] D

TXR[2] C

TXR[1] B

TXR[0] A

TXR[3] D

TXR[2] C

TXR[1] B

TXR[0] A

 NUC501 IP Programming Guide

- 51 -

7.4.8. Software I2C

The software I2C function contains 3 registers for software to control the output enable of pad actually. The

implementation of software I2C is shown as bellow. Software I2C works as I2C_EN bit set to 0. You can

toggle these bits to emulation the I2C protocol.

SCW

I2C_EN I2C

Core

Logic

SDW SEW

0 01 1

Pin

SCL_PADOEN_O SDA_PADOEN_O SDO_PADOEN_O

7.4.9. Arbitration

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition

within the minimum hold time.

CSR [I2C_AL]: Indicate the arbitration lose if the bit is equal to 1.

SCW Serial clock

SDW Serial data

SEW Serial enable output

SCR Serial clock pin status

SDR Serial data pin status

SER Serial enable output pin status

 NUC501 IP Programming Guide

- 52 -

7.5. Relative registers definition

Control and Status Register (CSR)

Register Offset R/W/C Description Reset Value

CSR 0x00 R/W Control and Status Register 0x0000_0000

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved I2C_RxACK I2C_BUSY I2C_AL
I2C_

TIP

7 6 5 4 3 2 1 0

Reserved Tx_NUM Reserved IF IE
I2C_

EN

Bits Descriptions

[31:12] Reserved Reserved

[11] I2C_RxACK

Received Acknowledge From Slave (Read only)

This flag represents acknowledge from the addressed slave.

 0 = Acknowledge received (ACK).

Data 1

Data 2

SDA

SCK

S

Master 1 loses arbitration

Data1 != SDA

 NUC501 IP Programming Guide

- 53 -

 1 = Not acknowledge received (NACK).

[10] I2C_BUSY

I2C Bus Busy (Read only)

 0 = After STOP signal detected.
 1 = After START signal detected.

[9] I2C_AL

Arbitration Lost (Read only)

This bit is set when the I2C core lost arbitration. Arbitration is lost

when:

 A STOP signal is detected, but no requested.
 The master drives SDA high, but SDA is low.

[8] I2C_TIP

Transfer In Progress (Read only)

 0 = Transfer complete.

 1 = Transferring data.

NOTE: When a transfer is in progress, you will not allow writing to

any register of the I2C master core except SWR.

[7:6] Reserved Reserved

[5:4] Tx_NUM

Transmit Byte Counts

These two bits represent how many bytes are remained to

transmit. When a byte has been transmitted, the Tx_NUM will

decrease 1 until all bytes are transmitted (Tx_NUM = 0x0) or NACK

received from slave. Then the interrupt signal will assert if IE was

set.

0x0 = Only one byte is left for transmission.

0x1 = Two bytes are left to for transmission.

0x2 = Three bytes are left for transmission.

0x3 = Four bytes are left for transmission.

NOTE: When NACK received, Tx_NUM will not decrease.

[3] Reserved Reserved

 NUC501 IP Programming Guide

- 54 -

[2] IF

Interrupt Flag

The Interrupt Flag is set when:

 Transfer has been completed.
 Transfer has not been completed, but slave responded NACK

(in multi-byte transmit mode).
 Arbitration is lost.

NOTE: This bit is read only, but can be cleared by writing 1 to this

bit.

[1] IE

Interrupt Enable

 0 = Disable I2C Interrupt.

 1 = Enable I2C Interrupt.

[0] I2C_EN

I2C Core Enable

 0 = Disable I2C core, serial bus outputs are controlled by
SDW/SCW.

 1 = Enable I2C core, serial bus outputs are controlled by I2C

core.

Command Register (CMDR)

Register Offset R/W/C Description Reset Value

CMDR 0x08 R/W Command Register 0x0000_000x

31 30 29 28 27 26 25 24

Reserved

23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8

Reserved

 NUC501 IP Programming Guide

- 55 -

7 6 5 4 3 2 1 0

Reserved Reserved Reserved START STOP READ WRITE ACK

NOTE: Software can write this register only when I2C_EN = 1.

Bits Descriptions

[31:5] Reserved Reserved

[4] START

Generate Start Condition

Generate (repeated) start condition on I2C bus.

[3] STOP

Generate Stop Condition

Generate stop condition on I2C bus.

[2] READ

Read Data From Slave

Retrieve data from slave.

[1] WRITE

Write Data To Slave

Transmit data to slave.

[0] ACK

Send Acknowledge To Slave

When I2C behaves as a receiver, sent ACK (ACK = ‘0’) or NACK (ACK

= ‘1’) to slave.

NOTE: The START, STOP, READ and WRITE bits are cleared automatically while transfer finished.

READ and WRITE cannot be set concurrently.

 NUC501 IP Programming Guide

- 56 -

8. General Purpose I/O (GPIO)

8.1. Overview

26 pins for 48-pins package and 37 pins for 64-pins package and COB of General Purpose I/O are shared

with special feature functions.

Supported Features of these I/O are: input or output facilities, pull-up resistors.

All these general purpose I/O functions are achieved by software programming setting. And the following

figures illustrate the control mechanism to achieve the GPIO functions.

VDD

Output
Enable

Pull Up

Output
Value

Output
Setting

Input
Enable

Pin Status

PIN

Figure 8-1 Type I GPIO: Input/Output Port with Program Controlled Weakly Pull-High

 NUC501 IP Programming Guide

- 57 -

VDD

Output
Enable

Pull Up

Output
Value

Output
Setting

Input
Enable

Pin Status

PIN

Analog
Input

Figure 8-2 Type II GPIO: Input/Output Port with Schmitt-Trigger Input

8.2. Block Diagram

Clock
Controller

AIC

GPIO
Controller

PAD

OUT IN

External Interrupt Controller

Debounce Counter

INT_GPIO[0:3]Wakeup

Figure 8-3 GPIO Block Diagram

 NUC501 IP Programming Guide

- 58 -

8.3. Registers

R : Read only, W : Write only, R/W : Both read and write, C : Only value 0 can be written

Register Address R/W Description Reset Value

GP_BA = 0xB800_3000

GPIOA_OMD GP_BA+0x00 R/W GPIO Port A Bit Output Mode Enable 0x0000_0000

GPIOA_PUEN GP_BA+0x04 R/W GPIO Port A Bit Pull-up Resistor Enable 0x0000_0000

GPIOA_DOUT GP_BA+0x08 R/W GPIO Port A Data Output Value 0x0000_0000

GPIOA_PIN GP_BA+0x0C R GPIO Port A Pin Value 0xXXXX_XXXX

GPIOB_OMD GP_BA+0x10 R/W GPIO Port B Bit Output Mode Enable 0x0000_0000

GPIOB_PUEN GP_BA+0x14 R/W GPIO Port B Bit Pull-up Resistor Enable 0x0000_0000

GPIOB_DOUT GP_BA+0x18 R/W GPIO Port B Data Output Value 0x0000_0000

GPIOB_PIN GP_BA+0x1C R GPIO Port B Pin Value 0xXXXX_XXXX

GPIOC_OMD GP_BA+0x20 R/W GPIO Port C Bit Output Mode Enable 0x0000_0000

GPIOC_PUEN GP_BA+0x24 R/W GPIO Port C Bit Pull-up Resistor Enable 0x0000_0000

GPIOC_DOUT GP_BA+0x28 R/W GPIO Port C Data Output Value 0x0000_0000

GPIOC_PIN GP_BA+0x2C R GPIO Port C Pin Value 0xXXXX_XXXX

DBNCECON GP_BA+0x70 R/W External Interrupt De-bounce Control 0x0000_0000

IRQSRCGPA GP_BA+0x80 R/W GPIO Port A IRQ Source Grouping 0x0000_0000

IRQSRCGPB GP_BA+0x84 R/W GPIO Port B IRQ Source Grouping 0x5555_5555

IRQSRCGPC GP_BA+0x88 R/W GPIO Port C IRQ Source Grouping 0xAAAA_AAAA

IRQENGPA GP_BA+0x90 R/W GPIO Port A Interrupt Enable 0x0000_0000

IRQENGPB GP_BA+0x94 R/W GPIO Port B Interrupt Enable 0x0000_0000

IRQENGPC GP_BA+0x98 R/W GPIO Port C Interrupt Enable 0x0000_0000

IRQLHSEL GP_BA+0xA0 R/W Interrupt Latch Trigger Selection Register 0x0000_0000

IRQLHGPA GP_BA+0xA4 R GPIO Port A Interrupt Latch Value 0x0000_0000

IRQLHGPB GP_BA+0xA8 R GPIO Port B Interrupt Latch Value 0x0000_0000

IRQLHGPC GP_BA+0xAC R GPIO Port C Interrupt Latch Value 0x0000_0000

IRQTGSRC0 GP_BA+0xB4 R/C
IRQ0~3 Interrupt Trigger Source Indicator

from GPIO Port A and GPIO Port B
0x0000_0000

IRQTGSRC1 GP_BA+0xB8 R/C
IRQ0~3 Interrupt Trigger Source Indicator

from GPIO Port C
0x0000_0000

 NUC501 IP Programming Guide

- 59 -

8.4. Functional Description

8.4.1. Pin description

Pin name Type Description

GPA[0] ~ GPA[15] Input/Output GPIO Port A (16bit)

GPB[0] ~ GPB[9] Input/Output GPIO Port B (10bit)

GPC[0] ~ GPC[10] Input/Output
GPIO Port C (11bit) (Only valid
with 64 pin)

8.4.2. PAD Function Setting

The GPIO input/output and multiple functions are configured by setting PAD Control Register

(PAD_REG0, PAD_REG1, and PAD_REG2). Programmers should not change the value of whole register

except the corresponding field of the register. A sample code configures GPIOB[4:1] as UART0 I/O is

given below.

int value;

// Read PAD_REG1 register value

value = inp32(PAD_REG1);

// Select UART0 as multi-function

value |= 0x100;

// Save the setting to PAD_REG1 register

outp32(PAD_REG1, value);

8.4.3. GPIO Output Mode

Before the system uses the GPIO pin as output pin, programmers need to configure GPIO Port x Bit Output

Enable Control Register. These registers decide the direction of GPIOs. Set the GPIOx_OMD[n] value as 1

(output mode).

After the above steps, user can change the GPIO pin output value (high or low) by writing 1 or 0 to GPIO

Port x Data Output Value register (GPIOx_DOUT). Programmers should not change the value of whole

register except the corresponding field of the register.

A sample code sets GPIOB[0] as GPIO output, then change the output between high and low is given

below.

 NUC501 IP Programming Guide

- 60 -

// Set GPIOB[0] as output mode by GPIOB_OMD register

outp32(GPIOB_OMD, (inp32(GPIOB_OMD) & ~0x0001) | 0x1);

// Set GPIOB[0] output 1 by GPIOB_DOUT register

outp32(GPIOB_DOUT, inp32(GPIOB_DOUT) | 0x0001);

// Set GPIOB[0] output 0 by GPIOB_DOUT register

outp32(GPIOB_DOUT, inp32(GPIOB_DOUT) & ~0x0001);

 NUC501 IP Programming Guide

- 61 -

8.4.4. GPIO Input Mode

Before the system uses the GPIO pin as input pin, programmers need to configure GPIO Port x Bit Output

Enable Control Register. These registers decide the direction of GPIOs. Set the GPIOx_OMD [n] value as

0 (input mode).

After the above steps, user can get the GPIO pin status (high or low) by reading GPIO Port x Pin Value

Register (GPIOx_PIN). By the way, user can enable/disable the GPIO pin as pull up by configure GPIO

Port x Bit Pull-up Register Enable

A sample code that sets GPIOB[0] as GPIO input, then reads its status is given below.

UINT32 status;

// Set GPIOB[0] as input mode by GPIOB_OMD register

outp32(GPIOB_OMD, (inp32(GPIOB_OMD) & ~0x0001)

// Read status from GPIOB_PIN register

status = inp32(GPIOB_PIN);

if(status & 0x1)

printf(“GPIOB[0] input value is High.”);

else

printf(“GPIOB[0] input value is Low.”);

8.4.5. GPIO Interrupt

Only the first set of GPIO supports interrupt mechanism. The usage of GPIO interrupt is described as

following steps.

1. Set the GPIOx_OMD [n] value as 0 (input mode).

2. Set the IRQSRCGPx to select the interrupt source group.

3. Set IRQENGPx to enable input falling/rising edge to trigger one of the interrupt sources.

4. Set IRQLHSEL to active IRQx interrupt to latch the input value of GPIOA/GPIOB/GPIOC.

Besides the above steps, programmers also need to handle AIC for system interrupt entry.

A sample code to install a call back function GpioIsr in GPIO interrupt is as follows.

// Set GPIOA[0] as input mode by GPIOA_OMD register

outp32(GPIOA_OMD, inp32(GPIOA_OMD) & ~0x0001);

// Set GPIOA[0] pin as one of interrupt sources to IRQ1 by IRQSRCGPA register

outp32(IRQSRCGPA, inp32(IRQSRCGPA) | 0x0001);

 NUC501 IP Programming Guide

- 62 -

// Enable GPIOA[0] input falling and rising edge interrupt by IRQSRCGPA register

outp32(IRQENGPA, inp32(IRQENGPA) | PA0ENF | PA0ENR);

// Set Interrupt latch trigger by IRQLHSEL register

outp32(IRQLHSEL, inp32(IRQLHSEL) | IRQ1LHE);

/* Install ISR */

...

/* enable CPSR I bit */

...

 NUC501 IP Programming Guide

- 63 -

9. Pulse Width Modulation (PWM)

9.1. Overview

The NUC501 have 4 channels PWM-timers. The 4 channels PWM-timers has 2 prescaler, 2 clock divider,

4 clock selectors, 4 16-bit counters, 4 16-bit comparators, 2 Dead-Zone generator. They are all driven by

system clock. Each channel can be used as a timer and issue interrupt independently.

Each two channels PWM-timers share the same prescaler(channel0-1 share prescalar0 and channel2-3

share prescalar1). Clock divider provides each channel with 5 clock sources (1, 1/2, 1/4, 1/8, 1/16). Each

channel receives its own clock signal from clock divider which receives clock from 8-bit prescaler. The

16-bit counter in each channel receive clock signal from clock selector and can be used to handle one

PWM period. The 16-bit comparator compares number in counter with threshold number in register loaded

previously to generate PWM duty cycle.

The NUC501 have 4 channels PWM-timers and each PWM-timer includes a capture channel. The Capture

0 and PWM 0 share a timer that included in PWM 0; and the Capture 1 and PWM 1 share another timer,

and etc. Therefore user must setup the PWM-timer before turn on Capture feature. After enabling capture

feature, the capture always latched PWM-counter to CRLR when input channel has a rising transition and

latched PWM-counter to CFLR when input channel has a falling transition. Capture channel 0 interrupt is

programmable by setting CCR0[1] (Rising latch Interrupt enable) and CCR0[2] (Falling latch Interrupt

enable) to decide the condition of interrupt occur. Capture channel 1 has the same feature by setting

CCR0[17] and CCR0[18]. And capture channel 2 & 3 has the same feature by setting CCR1[1],CCR1[2]

and CCR1[17], CCR1[18] respectively. Whenever Capture issues Interrupt 0/1/2/3, the PWM counter

0/1/2/3 will be reload at this moment.

There are only four interrupts from PWM to advanced interrupt controller (AIC). PWM 0 and Capture 0

share the same interrupt channel, PWM1 and Capture 1 share the same interrupt and so on. Therefore,

PWM function and Capture function in the same channel cannot be used at the same time.

The PWM features are :

 Two 8-bit prescalers and Two clock dividers

 Four clock selectors

 Four 16-bit counters and four 16-bit comparators

 Two Dead-Zone generator

 Capture function

9.2. Block Diagram

The following figure describes the architecture of PWM in one group. (channel0&1 are in one group and

channel2&3 are in another group)

 NUC501 IP Programming Guide

- 64 -

8-bit

Pre-scale

CP0

Control

Logic

Dead Zone

Generator

1

1/2

1/4

1/8

1/16

Control

Logic

CNR0 CMR0

CNR1 CMR1

pwm_clk

PWM0

PWM1

Dead Zone

Dead Zone

DZI0

8-bit

Pre-scale

CP1

Control

Logic

Dead Zone

Generator

1

1/2

1/4

1/8

1/16

Control

Logic

CNR2 CMR2

CNR3 CMR3

pwm_clk

PWM2

PWM3

Dead Zone

Dead Zone

DZI0

Figure 9-1 PWM Architecture Diagram

 NUC501 IP Programming Guide

- 65 -

9.3. Registers

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written

Register Address R/W Description Reset Value

PWM_BA = 0xB800_7000

PPR PWM_BA+0x000 R/W PWM Pre-scale Register 0x0000_0000

CSR PWM_BA+0x004 R/W PWM Clock Select Register 0x0000_0000

PCR PWM_BA+0x008 R/W PWM Control Register 0x0000_0000

CNR0 PWM_BA+0x00C R/W PWM Counter Register 0 0x0000_0000

CMR0 PWM_BA+0x010 R/W PWM Comparator Register 0 0x0000_0000

PDR0 PWM_BA+0x014 R PWM Data Register 0 0x0000_0000

CNR1 PWM_BA+0x018 R/W PWM Counter Register 1 0x0000_0000

CMR1 PWM_BA+0x01C R/W PWM Comparator Register 1 0x0000_0000

PDR1 PWM_BA+0x020 R PWM Data Register 1 0x0000_0000

CNR2 PWM_BA+0x024 R/W PWM Counter Register 2 0x0000_0000

CMR2 PWM_BA+0x028 R/W PWM Comparator Register 2 0x0000_0000

PDR2 PWM_BA+0x02C R PWM Data Register 2 0x0000_0000

CNR3 PWM_BA+0x030 R/W PWM Counter Register 3 0x0000_0000

CMR3 PWM_BA+0x034 R/W PWM Comparator Register 3 0x0000_0000

PDR3 PWM_BA+0x038 R PWM Data Register 3 0x0000_0000

PIER PWM_BA+0x040 R/W PWM Interrupt Enable Register 0x0000_0000

PIIR PWM_BA+0x044 R/C PWM Interrupt Indication Register 0x0000_0000

CCR0 PWM_BA+0x050 R/W Capture Control Register 0 0x0000_0000

CCR1 PWM_BA+0x054 R/W Capture Control Register 1 0x0000_0000

CRLR0 PWM_BA+0x058 R/W Capture Rising Latch Register (Channel 0) 0x0000_0000

CFLR0 PWM_BA+0x05C R/W Capture Falling Latch Register (Channel 0) 0x0000_0000

CRLR1 PWM_BA+0x060 R/W Capture Rising Latch Register (Channel 1) 0x0000_0000

CFLR1 PWM_BA+0x064 R/W Capture Falling Latch Register (Channel 1) 0x0000_0000

CRLR2 PWM_BA+0x068 R/W Capture Rising Latch Register (Channel 2) 0x0000_0000

CFLR2 PWM_BA+0x06C R/W Capture Falling Latch Register (Channel 2) 0x0000_0000

CRLR3 PWM_BA+0x070 R/W Capture Rising Latch Register (Channel 3) 0x0000_0000

CFLR3 PWM_BA+0x074 R/W Capture Falling Latch Register (Channel 3) 0x0000_0000

CAPENR PWM_BA+0x078 R/W Capture Input Enable Register 0x0000_0000

POE PWM_BA+0x07C R/W PWM Output Enable 0x0000_0000

 NUC501 IP Programming Guide

- 66 -

9.4. Functional Description

9.4.1. PWM Timer / Capture Channel

Here is brief description to tell the difference between Timer and Capture

1. PWM timer function can be used to be a general counter (No waveform output) or to create a specified

frequency waveform (Waveform output).

2. Capture function can get the input signal information. It gets the PWM internal counter value when

input signal is rising or falling. Then, user can use the APB clock and the captured values to obtain the

input signal information. Therefore, the corresponding PWM timer needs to be enabled before using

capture function.

3. The difference of register configuration between PWM timer and capture function

A. Pin function (PAD_REG0)

i. PWM timer : Select one or several pin to be the output pin(s)

ii. Capture Select only one pin to be the input pin

B. Only Capture function to configure the Capture function registers (CCR0/CCR1)

C. PWM function I/O Enable

i. PWM timer : PWM Output Enable Register (POE)

ii. Capture : Capture Input Enable Register (CAPENR)

9.4.2. PWM Timer

9.4.2.1. Prescaler and clock selector

The PWM has two groups (two channels in each group) of timers. The clock input of the group is

according to the PWM Prescaler Register (PPR) value. The PWM prescaler divided the clock input by

PPR+1 before it is fed to the counter. Please notice that when the PPR value equals zero, the prescaler

output clock will stop. Furthermore, according to the PWM Clock Select Register (CSR) value, the clock

input of PWM timer channel can be divided by 1,2,4,8 and 16.

Consider following examples, which explain the PWM timer period.

CSRPPRAPBCLK 


)1()(

1
period

When the PCLK = 60 MHz, the maximum and minimum PWM timer counting period is described as

follows.

Maximum period: PPR = 255 (since the length of PPR is 8bit) and CSR = 16

us
Mhz

266.68
16)1255()60(

1
period max 




Minimum period: PCLK = 60 MHz, PPR=1 and CSR=1

 NUC501 IP Programming Guide

- 67 -

us
Mhz

0333.0
1)11()60(

1
period min 




The maximum and minimum interval between two interrupts are according to the periodmax , periodmin and

PWM Counter Register(CNRx) length. The maximum interval between two interrupts is

(65535)*(68.266us) since the length of CNR is 16bit. Please notice that the above calculation is based on

the APBCLK = 60MHz. Therefore, all of the values need to be recalculated when the APBCLK is not

equal to 60 MHz.

9.4.2.2. Basic Timer Operation

Basic Timer operation

CMP 1 0

Counter 3 3 2 1 0 4 3 2 1 0 4

Timer

output

1

CNR : 3

Auto reload : 1

Timer enable

CMR : 0

CNR : 3

Auto-load Auto-load

CMR +1 = 2

CMR +1 = 1

CMR : 1

CNR + 1 = 4 CNR + 1 = 5

Figure 9-2 Basic Timer Operation Timing

9.4.2.3. PWM Double Buffering and Automatic Reload

NUC501 PWM Timers have a double buffering function, enabling the reload value changed for next timer

operation without stopping current timer operation. Although new timer value is set, current timer

operation still operate successfully.

The counter value can be written into CNR0~3 and current counter value can be read from PDR0~3.

The auto-reload operation copies loaded value from CNR0~3 to down-counter when down-counter reaches

zero. If CNR0~3 are set as zero, counter will be halt when counter count to zero. If auto-reload bit is set as

zero, counter will be stopped immediately.

 NUC501 IP Programming Guide

- 68 -

pwm_out

write a nonzero

number to prescaler &

setup clock dividor

Start

Reg_CNR=150

Reg_CMR=50

151

51

200

50

Reg_CNR=199

Reg_CMR=49

Reg_CNR=99

Reg_CMR=0

100

1

Reg_CNR=0

Reg_CMR=XX

Stop

PWM double buffering

Figure 9-3 PWM Double Buffering Illustration

9.4.2.4. Modulate Duty Ratio

The double buffering function allows CMR written at any point in current cycle. The loaded value will take

effect from next cycle.

 NUC501 IP Programming Guide

- 69 -

Modulate PWM controller ouput duty ratio(CNR = 150)

Write

CMR=100

Write

CMR=50

Write

CMR=0

1 PWM cycle = 151 1 PWM cycle = 151 1 PWM cycle = 151

101 51 1

Figure 9-4 PWM Controller Output Duty Ratio

9.4.2.5. Dead-Zone Generator

NUC501 PWM is implemented with Dead Zone generator. They are built for power device protection. This

function enables generation of a programmable time gap at the rising of PWM output waveform. User can

program PPR [31:24] and PPR [23:16] to determine the two Dead Zone interval respectively.

 NUC501 IP Programming Guide

- 70 -

Dead zone generator operation

PWM_out1

PWM_out1_n

PWM_out1_DZ

PWM_out1_n_DZ

Dead zone interval

Figure 9-5 Dead Zone Generation Operation

9.4.2.6. PWM Timer Start Procedure

1. Pin function setting

Each PWM channel has several output pins. User can configure the PAD Control Register

(PAD_REG0) to choose the pin for PWM timer output pins. (PWM timer can output to several pins)

and enable the output function in the PWM Output Enable Register (POE).

The following figure shows the relationship between waveform output pins and I/O enable

configuration. Only when the corresponding POE bit is enabled, the waveform can output from the

specified pins. The waveform can output to several pins (controlled by PWMTMRx_O) concurrently.

 NUC501 IP Programming Guide

- 71 -

PAD_REG0:

Bits Descriptions

[28:24] PWM_TMR3_O

PWM Timer 3 output pin selection

1 = output enable

0 = output disable

[24] = PWM Timer 3 channel 0 output to GPIOB[0]

[25] = PWM Timer 3 channel 1 output to GPIOB[4]

[26] = PWM Timer 3 channel 2 output to GPIOC[6]

[27] = PWM Timer 3 channel 3 output to GPIOC[10]

[28] = PWM Timer 3 channel 4 output to GPIOB[7]

[20:16] PWM_TMR2_O

PWM Timer 2 output pin selection

1 = output enable

0 = output disable

[16] = PWM Timer 2 channel 0 output to GPIOA[15]

[17] = PWM Timer 2 channel 1 output to GPIOB[3]

[18] = PWM Timer 2 channel 2 output to GPIOC[5]

[19] = PWM Timer 2 channel 3 output to GPIOC[9]

[20] = PWM Timer 2 channel 4 output to GPIOB[6]

PWM3

POE[3]

PWMTMR3_O[0]

PWMTMR3_O[1]_

PWMTMR3_O[2]

PWMTMR3_O[3]

PWMTMR3_O[4]

GPIOB[0]

GPIOB[4]

GPIOC[6]

GPIOC[10]

GPIOB[7]

 NUC501 IP Programming Guide

- 72 -

[12:8] PWM_TMR1_O

PWM Timer 1 output pin selection

1 = output enable

0 = output disable

[8] = PWM Timer 1 channel 0 output to GPIOA[13]

[9] = PWM Timer 1 channel 1 output to GPIOB[2]

[10] = PWM Timer 1 channel 2 output to GPIOC[4]

[11] = PWM Timer 1 channel 3 output to GPIOC[8]

[12] = PWM Timer 1 channel 4 output to GPIOB[9]

[4:0] PWM_TMR0

PWM Timer 0 output pin selection

1 = output enable

0 = output disable

[0] = PWM Timer 0 channel 0 output to GPIOA[12]

[1] = PWM Timer 0 channel 1 output to GPIOB[1]

[2] = PWM Timer 0 channel 2 output to GPIOC[3]

[3] = PWM Timer 0 channel 3 output to GPIOC[7]

[4] = PWM Timer 0 channel 4 output to GPIOB[8]

2. Setup clock selector (CSR)

3. Setup prescaler & dead zone interval (PPR)

4. Setup inverter on/off, dead zone generator on/off, toggle mode /one-shot mode, and pwm timer off.

(PCR)

5. Setup comparator register (CMR)

6. Setup counter register (CNR)

7. Setup interrupt enable register (PIER)

8. Enable pwm timer (PCR)

 NUC501 IP Programming Guide

- 73 -

Figure 9-6 PWM Timer Start Procedure

PWM Timer Start

Setup prescaler & dead zone

interval (PPR)

Setup clock selector (CSR)

Setup Dead-Zone generator on/off

End

Setup GPIO

Setup inverter on/off

toggle mode/one-shot mode

Setup CNR, CMR

Setup PIER

Start PWM timer

 NUC501 IP Programming Guide

- 74 -

9.4.2.7. PWM Timer Stop Procedure

Method 1:

Set 16-bit down counter (CNR) as 0, and monitor PDR. When PDR reaches to 0, disable pwm timer (PCR).

(Recommended)

Method 2:

Set 16-bit down counter (CNR) as 0. When interrupt request happen, disable pwm timer (PCR).

(Recommended)

Method 3:

Disable pwm timer directly (PCR). (Not recommended)

PWM

running

Set PWM counter

register be zero

(PWM_CNRx)

Wait for count

down data be zero

(PWM_PDRx)

PWM

stop

Disable PWM

timer (PWM_PCR)

Figure 9-7 PWM Timer Stop flow chart (method 1)

 NUC501 IP Programming Guide

- 75 -

PWM

running

Set PWM counter

register be zero

(PWM_CNRx)

Wait for interrupt

happen

(PWM_PIIR)

PWM

stop

Disable PWM

timer

(PWM_PCR)

Figure 9-8 PWM Timer Stop flow chart (method 2)

9.4.3. Capture

9.4.3.1. Capture Description

Capture function can get the input signal information. It gets the PWM internal counter value when input

signal is rising or falling. Then, user can use the APB clock and the captured values to obtain the input

signal information. Therefore, the corresponding timer needs to be enabled before using capture function.

Here is some note for capture register:

1. CIIRx, FL&IEx, and RL&IEx

A. FL&IEx (Falling interrupt enable)

B. RL&IEx (Rising interrupt enable)

C. CIIR (Interrupt flag) : When a rising/falling transition and the rising/falling interrupt is enabled,

this bit is 1. Write “0” to clear.

D. The rising & falling interrupt can be enabled concurrently. User can tell the interrupt type by the

falling/.rising transition dirty bit.

2. CFLRDx and CRLRD

 NUC501 IP Programming Guide

- 76 -

A. CFLRDx (Falling transition dirty bit)

B. CRLRDx (Rising transition dirty bit)

C. When input channel has a rising/falling transition, CRLRDx/CFLRDx is updated to “1” (No

matter the rising/falling interrupt is enabled or not)

D. The bit is not updated to “0” when it has a falling transition. It needs to be clear by user.

E. Write “0” to clear

3. Interrupt and reload behavior

A. The corresponding timer reloads when next capture interrupt occur when the falling interrupt is

enabled and the Capture interrupt is clear.

9.4.3.2. Capture Start Procedure

1. Pin function setting.

Each PWM channel has several input pins. User can configure the PAD Control Register

(PAD_REG0) to choose the pin for PWM Capture input pin. (Capture only can input from one pin)

and enable the input function in the Capture Input Enable Register (CAPENR).

PAD_REG0:

Bits Descriptions

[31:29] PWM_TMR3_I

PWM Timer 3 input pin selection

000 = PWM Timer 3 input from GPIOB[0]

001 = PWM Timer 3 input from GPIOB[4]

010 = PWM Timer 3 input from GPIOC[6]

011 = PWM Timer 3 input from GPIOC[10]

100 = PWM Timer 3 input from GPIOB[7]

Others is unacceptable

[23:21] PWM_TMR2_I

PWM Timer 2 input pin selection

000 = PWM Timer 2 input from GPIOA[15]

001 = PWM Timer 2 input from GPIOB[3]

010 = PWM Timer 2 input from GPIOC[5]

011 = PWM Timer 2 input from GPIOC[9]

100 = PWM Timer 2 input from GPIOB[6]

Others is unacceptable

[15:13] PWM_TMR1_I

PWM Timer 1 input pin selection

000 = PWM Timer 1 input from GPIOA[13]

001 = PWM Timer 1 input from GPIOB[2]

010 = PWM Timer 1 input from GPIOC[4]

011 = PWM Timer 1 input from GPIOC[8]

100 = PWM Timer 1 input from GPIOB[9]

Others is unacceptable

 NUC501 IP Programming Guide

- 77 -

[7:5] PWM_TMR0_I

PWM Timer 0 input pin selection

000 = PWM Timer 0 input from GPIOA[12]

001 = PWM Timer 0 input from GPIOB[1]

010 = PWM Timer 0 input from GPIOC[3]

011 = PWM Timer 0 input from GPIOC[7]

100 = PWM Timer 0 input from GPIOB[8]

2. Enable the corresponding timer

 Setup clock selector (CSR)

 Setup prescaler & dead zone interval (PPR)

 Setup inverter on/off, dead zone generator on/off, toggle mode /one-shot mode, and pwm

timer off. (PCR)

 Setup comparator register (CMR)

 Setup counter register (CNR)

 Enable pwm timer (PCR)

3. Setup capture register (CCR0/CCR1)

 Clear dirty bit (CRLRDx/CFLRDx)

 Clear interrupt flag(CIIRx)

 Enable/Disable Inverter function (INVx)

 Enable /Disable the interrupt (FL&IEx/ RL&IEx)

4. Enable pwm capture (CAPCHxEN bit)

9.4.3.3. Capture Basic Timer Operation

At this case, the CNR is 8 for capture channel (CAPCHxEN = 1):

1. When set falling interrupt enable, the pwm counter will be reload at time of interrupt occur.

2. The channel low pulse width is (CNR – CRLR).

3. The channel high pulse width is (CRLR - CFLR).

4. The channel cycle time is (CNR – CFLR).

 NUC501 IP Programming Guide

- 78 -

10. Real Time Clock (RTC)

10.1. Overview

Real Time Clock (RTC) block can be operated by independent power supply while the system power is off.

The RTC uses a 32.768 KHz external crystal. The RTC can transmit data to CPU with BCD values. The

data includes the time by (second, minute and hour), the date by (day, month and year). In addition, to

achieve better frequency accuracy, the RTC counter can be adjusted by software.

Features:

 Time counter (second, minute, hour) and calendar counter (day, month, year).

 Alarm register (second, minute, hour, day, month, year).

 12-hour or 24-hour mode is selectable.

 Recognize leap year automatically

 Day of the week counter

 Frequency compensate register(FCR)

 Beside FCR, all clock and alarm data expressed in BCD code

 Support tick time interrupt

 Support wake up function.

10.2. Block Diagram

The following figure describes the architecture of real time clock

 NUC501 IP Programming Guide

- 79 -

Figure 10-1 RTC Architecture Diagram

10.3. Registers

Register Address R/W Description Reset Value

RTC_BA = 0xB800_8000

INIR RTC_BA+0x000 R/W RTC Initiation Register 0x0000_0000

AER RTC_BA+0x004 R/W RTC Access Enable Register 0x0000_0000

FCR RTC_BA+0x008 R/W RTC Frequency Compensation Register 0x0000_0700

TLR RTC_BA+0x00C R/W Time Loading Register 0x0000_0000

CLR RTC_BA+0x010 R/W Calendar Loading Register 0x0005_0101

TSSR RTC_BA+0x014 R/W Time Scale Selection Register 0x0000_0001

DWR RTC_BA+0x018 R/W Day of the Week Register 0x0000_0006

TAR RTC_BA+0x01C R/W Time Alarm Register 0x0000_0000

CAR RTC_BA+0x020 R/W Calendar Alarm Register 0x0000_0000

LIR RTC_BA+0x024 R Leap year Indicator Register 0x0000_0000

RIER RTC_BA+0x028 R/W RTC Interrupt Enable Register 0x0000_0000

RIIR RTC_BA+0x02C R/C RTC Interrupt Indicator Register 0x0000_0000

TTR RTC_BA+0x030 R/W RTC Time Tick Register 0x0000_0000

A
P

B

Wakeup

VBA
T

Interrupt

RTC_TOP

L
E
V
E
L

S
H
I
F

T

A
P
B

B
I

U

A IC

Clock

Control

PIN

 NUC501 IP Programming Guide

- 80 -

10.4. Functional Description

10.4.1. Initialization

When RTC block is power on, programmer has to write a number (0xa5eb1357) to register INIR to reset

all logic. INIR act as hardware reset circuit. Once INIR has been set as 0xa5eb1357, there is no action for

RTC if any value be programmed into INIR register.

10.4.2. RTC Read/Write Enable

Register AER bit 15~0 is for RTC read/write password. It is used to avoid signal interference from system

during system power off. AER bit 15~0 has to be set as 0xa965 after system power on. Once it is set, it

will take effect 512 RTC clocks later (about 15ms). Programmer can read AER bit 16 to find out whether

RTC register can be accessed.

10.4.3. Frequency Compensation

The RTC FCR allows software control digital compensation of a 32.768 KHz crystal oscillator. User can

utilize a frequency counter to measure RTC clock in one of GPIO pin during manufacture, and store the

value in Flash memory for retrieval when the product is first power on. The equation fro FCR please see

the section 10.4.8.

10.4.4. Time and Calendar counter

TLR and CLR are used to load the time and calendar. TAR and CAR are used for alarm. They are all

represented by BCD.

10.4.5. Day of the week counter

Count from Sunday to Saturday.

 NUC501 IP Programming Guide

- 81 -

10.4.6. Time tick interrupt

RTC block use a counter to calibrate the time tick count value. When the value in counter reaches zero,

RTC will issue an interrupt.

10.4.7. RTC register property

When system power is off but RTC power is on, data stored in RTC registers will not lost except RIER

and RIIR. Because of clock difference between RTC clock and system clock, when user write new data to

any one of the registers, the register will not be updated until 2 RTC clocks later (60us). Hence

programmer should consider about access sequence between TSSR, TAR and TLR.

In addition, user must be aware that RTC block does not check whether loaded data is out of bounds or not.

RTC does not check rationality between DWR and CLR either.

10.4.8. Application Note

 TAR, CAR, TLR and CLR are all BCD counter, but FCR is not a BCD counter.

 Programmer has to make sure that the loaded values are reasonable, for example, Load CLR as

201a (year), 13 (month), 00 (day), or CLR does not match with DWR, etc.

 Reset state :

Register Reset State

AER 0(RTC read/write disable)

CLR 05, 1, 1 (2005-1-1)

TLR 00 hr: 00 min: 00 sec

CAR 00/00/00

TAR 00:00:00

TSSR 1 (24 hr mode)

DWR 6 (Saturday)

RIER 0

RIIR 0

LIR 0

TTR 0

 FCR Calibration :

 (a) FCR integer : look up the below table.

Integer part of

detected value
FCR[11:8]

Integer part of

detected value
FCR[11:8]

32776 1111 32768 0111

32775 1110 32767 0110

32774 1101 32766 0101

32773 1100 32765 0100

32772 1011 32764 0011

 NUC501 IP Programming Guide

- 82 -

32771 1010 32763 0010

32770 1001 32762 0001

32769 1000 32761 0000

 (b) FCR Calibration :

Example 1,

Frequency counter measurement : 32773.65Hz (> 32768 Hz)

Integer part : 32773 => 0x8005

 FCR_int = 0x05 – 0x01 + 0x08 = 0x0c

Fraction part : 0.65 X 60 = 39 => 0x27

 FCR_fra = 0x27

Example 2,

Frequency counter measurement : 32765.27Hz (≦ 32768 Hz)

Integer part : 32765 => 0x7ffd

 FCR_int = 0x0d – 0x01 – 0x08 = 0x04

Fraction part : 0.27 x 60 = 16.2 => 0x10

 FCR_fra = 0x10

 In TLR and TAR, only 2 BCD digits are used to express “year”. We assume 2 BCD digits of

XY denote 20XY , but not 19XY or 21XY.

10.5. Programming Note

Be sure to write RTC access password (0xa965) to AER to enable RTC registers write before you write

RTC register and each access time is about 15 ms.

 Set Calendar and Time

1. When RTC is power on, programmer has to write a number 0xa5eb1357 to INIR to reset all

 logic RTC

2. Read register INIR[0] if it equals to 1 means RTC is at normal active state.

3. Write RTC access password (0xa965) to AER to enable RTC register write.

4. Read register AER[16], RTC is read/write enable if it‟s equal to 1.

5. Set register TSSR[0] to select 12-hour or 24-hour time scale mode.

6. Set year, month and day to register CLR

7. Set day of week to register DWR

8. Set hour, minute and second to register TLR

9. Write 0x0 to AER means disable RTC access enable/disable password

 NUC501 IP Programming Guide

- 83 -

RTC

start

Initialize RTC
(INIR)

Initialize completed

(bit 0 of INIR be high?)

Enable register

R/W

(AER)

Enable register R/W

completeted

(bit 16 of AER be high?)

Y

E

S

N

O

N

O

Y

E

S

Set time scale

(TSSR)

Set time, day

and calendar

(TLR, DWR,

CLR)

Disable RTC

register R/W

(AER)

end

Figure 10-2 RTC Set Calendar and Time flow chart

 Set Calendar and Time Alarm

 Set and prepare the ISR of RTC alarm

 Set time and calendar same as above step 1-8

 Set alarm year, month and day to register CAR

 Set alarm hour, minute and second to register TAR

 NUC501 IP Programming Guide

- 84 -

 Set “1” to RIER[0] for alarm interrupt enable

 Write 0x0 to AER means disable RTC access enable/disable password

RTC

start

INitialize RTC

(INIR)

Initilaize copleted

(bit 0 of INIR be high?)

Enable

register

R/W (AER)

Enable register R/W

completed

(bit 16 of AER behigh?)

Y

E

S

N

O

N

O

Y

E

S

Set time scale

(TSSR)

Set time, day and

calendar

(TLR, DWR and

CLR)

Disable RTC

register R/W

(AER)

end

Set alarm time

and calendar

(TAR, CAR)

Set alarm

interrupt enable

(RIER)

Figure 10-3 RTC Set Calendar and Time Alarm flow chart

 Set tick interrupt

 NUC501 IP Programming Guide

- 85 -

 Set and prepare the ISR of RTC tick interrupt

 When RTC is power on, programmer has to write a number 0xa5eb1357 to INIR to reset

all logic RTC

 Read register INIR[0] if it equals to 1 means RTC is at normal active state.

 Write RTC access password (0xa965) to AER to enable RTC register write.

 Read register AER[16], RTC is read/write enable if it‟s equal to 1.

 Set the TTR for tick interrupt happen time interval per second

 Set “1” to RIER[1] for tick interrupt enable

 Write 0x0 to AER means disable RTC access enable/disable password

RTC start

Initialize RTC

(INIR)

Initialize completed

(bit 0 of INIR be high?)

Enable register R/

W

(AER)

Enable register R/W

completed (bit 16 of AER be

high?)

Y

E

S

N

O

N

O

Y

E

S

end

Set interrupt tick

number

(TTR)

Set tick interrupt

enable

(RIER)

Figure 10-4 RTC Set tick interrupt flow chart

 NUC501 IP Programming Guide

- 86 -

11. Serial Peripheral Interface Controller (SPI

Master/Slave)

11.1. Overview

11.1.1. SPI Serial Interface Controller (Master/Slave)

The SPI controller performs a serial-to-parallel conversion on data characters received from the peripheral,

and a parallel-to-serial conversion on data characters received from CPU. This controller can drive up to 2

external peripherals, but is time-shared and can not operate simultaneously. It also can be driven as the

slave device when the CNTRL[18], SLAVE bit, be set.

It can generate an interrupt signal when data transfer is finished and can be cleared by writing 1 to the

interrupt flag. The active level of slave select signal can be chosen to low active or high active on

SSR[SS_LVL] bit, which depends on the peripheral it‟s connected. Writing a divisor into DIVIDER

register can program the frequency of serial clock output. This controller contains four 32-bit

transmit/receive buffers, and can provide burst mode operation. It supports variable length transfer and the

maximum transmitted/received length can be up to 128 bits.

The SPI Master/Slave Core includes the following features:

 AMBA APB interface compatible

 Support SPI master/slave mode

 Full duplex synchronous serial data transfer

 Variable length of transfer word up to 32 bits

 Provide burst mode operation, transmit/receive can be executed up to four times in one

transfer

 MSB or LSB first data transfer

 Rx and Tx on both rising or falling edge of serial clock independently

 2 slave/device select lines when it is as the master mode, and 1 slave/device select line

when it is as the slave mode

 Fully static synchronous design with one clock domain

 Only Support the external master device that the frequency of its serial clock output is less

1/4 than the SPI Core clock input (PCLK) and its slave select output is edge-active trigger.

 NUC501 IP Programming Guide

- 87 -

11.2. Block Diagram

11.2.1. SPI Block Diagram (Master/Slave)

The block diagram of SPI Serial Interface controller is shown as following.

Figure 11-1 SPIMS Block Diagram(Master/Slave)

Pin descriptions:

spi_sclk_o: SPI master serial clock output pin.

spi_int_o: SPI interrupt signal output.

spi_ss_o[1:0]: SPI two slave/device select signals output.

spi_so_o: SPI serial data output pin (to slave device in master mode or to

master device in slave mode).
spi_si_i: SPI serial data input pin (from slave device in master mode or from

master device in salve mode).
spi_sclk_i: SPI slave serial clock input pin.
spi_ss_i: V SPI slave slave/device select signal input (edge-active trigger).

spi_sclk_o
Interrupt

Clock
Generator

I/O
Decoder

 Registers

SPI
Master/Slave
Core Logic

A
P
B

B
U
S

AIC Clock

Control

PIN

TX/RX
Buffers

spi_ss_i

spi_sclk_i

spi_ss_o

spi_so_o

spi_si_i

spi_slave

SPIMS_TOP

 NUC501 IP Programming Guide

- 88 -

11.2.2. SPI Timing Diagram (Master/Slave)

The timing diagrams of SPI Master/Slave are shown as following.

MSB

(Tx0[7])

LSB

(Tx0[0])

MSB

(Rx0[7])

LSB

(Rx0[0])

mw_ss_o

mw_sclk_o

spi_so_o

spi_si_i

Master Mode : CNTRL[SLAVE]=0, CNTRL[LSB] = 0,CNTRL[Tx_NUM]=0x0, CNTRL[Tx_BIT_LEN]=0x08,

Tx0[6] Tx0[5] Tx0[4] Tx0[3] Tx0[2] Tx0[1]

Rx0[6] Rx0[5] Rx0[4] Rx0[3] Rx0[2] Rx0[1]

CLKP = 0

CLKP = 1

SS_LVL = 0

SS_LVL = 1

1. CNTRL[CLKP] = 0, CNTRL[Tx_NEG] = 1, CNTRL[Rx_NEG] = 0 or

2. CNTRL[CLKP] = 1, CNTRL[Tx_NEG] = 0, CNTRL[Rx_NEG] = 1 or

Figure 11-2 SPI Timing (Master)

 NUC501 IP Programming Guide

- 89 -

LSB

(Tx0[0])

MSB

(Tx0[7])

LSB

(Rx0[0])

MSB

(Rx0[7])

mw_ss_o

mw_sclk_o

spi_so_o

spi_si_i

Master Mode : CNTRL[SLAVE]=0, CNTRL[LSB] = 1,CNTRL[Tx_NUM]=0x0, CNTRL[Tx_BIT_LEN]=0x08,

Tx0[1] Tx0[2] Tx0[3] Tx0[4] Tx0[5] Tx0[6]

Rx0[1] Rx0[2] Rx0[3] Rx0[4] Rx0[5] Rx0[6]

CLKP = 0

CLKP = 1

SS_LVL = 0

SS_LVL = 1

1. CNTRL[CLKP] = 0, CNTRL[Tx_NEG] = 0, CNTRL[Rx_NEG] = 1 or

2. CNTRL[CLKP] = 1, CNTRL[Tx_NEG] = 1, CNTRL[Rx_NEG] = 0 or

Figure 11-3 Alternate Phase SCLK clock Timing (Master)

MSB

(Tx0[7])

LSB

(Tx0[0])

MSB

(Rx0[7])

LSB

(Rx0[0])

mw_ss_o

mw_sclk_o

spi_so_o

spi_si_i

Master Mode : CNTRL[SLAVE]=0, CNTRL[LSB] = 0,CNTRL[Tx_NUM]=0x0, CNTRL[Tx_BIT_LEN]=0x08,

Tx0[6] Tx0[0] Tx1[7] Tx1[6]

Rx0[6] Rx0[0] Rx1[7] Rx1[6]

CLKP = 0

CLKP = 1

SS_LVL = 0

SS_LVL = 1

1. CNTRL[CLKP] = 0, CNTRL[Tx_NEG] = 1, CNTRL[Rx_NEG] = 0 or

2. CNTRL[CLKP] = 1, CNTRL[Tx_NEG] = 0, CNTRL[Rx_NEG] = 1 or

Figure 11-4 SPI Timing (Slave)

 NUC501 IP Programming Guide

- 90 -

LSB

(Tx0[0])

MSB

(Tx0[7])

LSB

(Rx0[0])

MSB

(Rx0[7])

mw_ss_o

mw_sclk_o

spi_so_o

spi_si_i

Master Mode : CNTRL[SLAVE]=0, CNTRL[LSB] = 0,CNTRL[Tx_NUM]=0x0, CNTRL[Tx_BIT_LEN]=0x08,

Tx0[1] Tx0[7] Tx1[0] Tx1[6]

Rx0[1] Rx0[7] Rx1[0] Rx1[6]

CLKP = 0

CLKP = 1

SS_LVL = 0

SS_LVL = 1

1. CNTRL[CLKP] = 0, CNTRL[Tx_NEG] = 1, CNTRL[Rx_NEG] = 0 or

2. CNTRL[CLKP] = 1, CNTRL[Tx_NEG] = 0, CNTRL[Rx_NEG] = 1 or

Figure 11-5 Alternate Phase SCLK Clock Timing (Slave)

11.3. Registers

R: read only, W: write only, R/W: both read and write

Register Offset R/W Description Reset Value

SPI_BA = 0xB800_A000

CNTRL SPI_BA + 0x00 R/W Control and Status Register 0x0000_0004

DIVIDER SPI_BA + 0x04 R/W Clock Divider Register 0x0000_0000

SSR SPI_BA + 0x08 R/W Slave Select Register 0x0000_0000

Reserved SPI_BA + 0x0C N/A Reserved N/A

Rx0 SPI_BA + 0x10 R Data Receive Register 0 0x0000_0000

Rx1 SPI_BA + 0x14 R Data Receive Register 1 0x0000_0000

Rx2 SPI_BA + 0x18 R Data Receive Register 2 0x0000_0000

Rx3 SPI_BA + 0x1C R Data Receive Register 3 0x0000_0000

Tx0 SPI_BA + 0x10 W Data Transmit Register 0 0x0000_0000

Tx1 SPI_BA + 0x14 W Data Transmit Register 1 0x0000_0000

Tx2 SPI_BA + 0x18 W Data Transmit Register 2 0x0000_0000

Tx3 SPI_BA + 0x1C W Data Transmit Register 3 0x0000_0000

NOTE 1: When software programs CNTRL, the GO_BUSY bit should be written last.

 NUC501 IP Programming Guide

- 91 -

11.4. Functional Description

11.4.1. Active SPI Controller

To activate the SPI, please follow the steps below:

1. Set the TX_BIT_LEN bit of CNTRL register to set the transmit bit length

2. Set the TX_NUM bit of CNTRL register to set the transfer numbers

3. Set the GO_BUSY bit of CNTRL register to activate SPI Controller

4. Polling GO_BUSY bit of CNTRL register until it was cleared, or waiting IF interrupt of CNTRL

register.

11.4.2. Initialize SPI Controller

To initial the SPI Controller, please follow the steps below:

1. Configure GPIO SPI Multiple function

2. Set DIVIDER register to generate the serial clock on output clock

3. Set SSR register to select the access device

4. Set LSB bit of CNTRL register to send LSB or MSB first

5. Set the IE bit of CNTRL register to enable SPI Controller interrupt

11.4.3. SPI Controller Transmit/Receive

To transmit/receive the data, please follow the steps below:

1. Fill the data into Tx0 ~ Tx3 registers

2. Activate the SPI Controller

3. Receive the data from Rx0 ~ Rx3 registers

11.4.4. SPI Programming Example

The programming example is for accessing a device with following specifications

 Data bit latches on positive edge of serial clock

 Data bit drives on negative edge of serial clock

 Data is transferred with the MSB first

 Only one byte transmits/receives in a transfer

 Chip select signal is active low

 NUC501 IP Programming Guide

- 92 -

You should do following actions basically (you should refer to the specification of device for the detailed

steps):

1. Write a divisor into DIVIDER to determine the frequency of serial clock.

2. Write in SSR, set ASS = 0, SS_LVL = 0 and SSR[0] or SSR[1] to 1 to activate the device you want to

access.

When transmit (write) data to device:

3. Write the data you want to transmit into Tx0[7:0].

When receive (read) data from device:

4. Write 0xFFFFFFFF into Tx0.

5. Write in CNTRL, set Rx_NEG = 0, Tx_NEG = 1, Tx_BIT_LEN = 0x08, Tx_NUM = 0x0, LSB = 0,

SLEEP = 0x0 and GO_BUSY = 1 to start the transfer.

–– Wait for interrupt (if IE = 1) or polling the GO_BUSY bit until it turns to 0 ––

6. Read out the received data from Rx0.

7. Go to 3) to continue data transfer or set SSR[0] or SSR[1] to 0 to inactivate the device.

 NUC501 IP Programming Guide

- 93 -

12. Timer and WDT

12.1. Overview

12.1.1. General Timer Controller

The timer allows user to easily implement a counting scheme for use. The timer can perform functions like

frequency measurement, event counting, interval measurement, pulse generation, delay timing, and so on.

The timer possesses features such as adjustable resolution, programmable counting period. See descriptions

below for more detailed information. The timer can generate an interrupt signal upon timeout, or provide

the current value of count during operation.

The general TIMER Controller includes the following features

 Compliant with the AMBA APB

 One channel with a 32-bit counter and an interrupt request.

 Maximum uninterrupted time = (1 / 12 MHz) * (2^8) * (2^32 - 1), if TCLK = 12 MHz

12.1.2. Watchdog Timer

The purpose of watchdog timer is to perform a system restart after the software running into a problem.

This recovers system from crash for some reasons. It is a free running timer with programmable time-out

intervals. When the specified time internal expires, a system reset can be generated. If the watchdog timer

reset function is enabled and the watchdog timer is not being reset before timing out, then the watchdog

reset is activated after 1024 WDT clocks. Setting WTE in the register WTCR enables the watchdog

timer.

The WTR should be set before making use of watchdog timer. This ensures that the watchdog timer

restarts from a known state. The watchdog timer will start counting and time-out after a specified period of

time. The time-out interval is selected by two bits, WTIS[1:0]. The WTR is self-clearing, i.e., after

setting it, the hardware will automatically reset it.

When timeout occurs, Watchdog Timer interrupt flag is set. Watchdog Timer waits for an additional 1024

WDT clock cycles before issuing a reset signal, if the WTRE is set. The WTRF will be set and the reset

signal will last for 16128 WDT clock cycles long. When used as a simple timer, the reset function is

disabled. Watchdog Timer will set the WTIF each time a timeout occurs. The WTIF can be polled to

check the status, and software can restart the timer by setting the WTR. The Watchdog Timer can be put

in the test mode by setting WTTME in the register WTCR.

 NUC501 IP Programming Guide

- 94 -

12.2. Block Diagram

tmint2_o

TCLK1

TCLK2
toggle2_o

tmint1_o

toggle1_o

wdt_int_o

wdt_rst_n

WDTCLK

TIMER1

Core Logic
A

M
B

A
 A

P
B

 I
n

te
rf

a
c

e

I/O

Decoder

Registers

TIMER2

Core Logic

Watchdog

Timer

Sync.

Logic

TCLK1

TCLK2
25MHz

WDTCLK
25MHz

Figure 12-1 Timer Block Diagram

Figure 12-2 Watchdog Timer Block Diagram

 NUC501 IP Programming Guide

- 95 -

12.3. Registers

R : Read only, W : Write only, R/W : Both read and write, C : Only value 0 can be written

Register Address R/W/C Description Reset Value

TMR_BA = 0xB800_B000

TCSR0 TMR_BA+00 R/W Timer Control and Status Register 0 0x0000_0005

TCSR1 TMR_BA+04 R/W Timer Control and Status Register 1 0x0000_0005

TICR0 TMR_BA+08 R/W Timer Initial Control Register 0 0x0000_0000

TICR1 TMR_BA+0C R/W Timer Initial Control Register 1 0x0000_0000

TDR0 TMR_BA+10 R Timer Data Register 0 0x0000_0000

TDR1 TMR_BA+14 R Timer Data Register 1 0x0000_0000

TISR TMR_BA+18 R/W Timer Interrupt Status Register 0x0000_0000

WTCR TMR_BA+1C R/W Watchdog Timer Control Register 0x0000_0400

12.4. Functional Description

12.4.1. Interrupt Frequency

The frequency of timer interrupt depends on the following equation:

Freq. = Crystal clock / ((pre-scaler+1) * counter))

For example, the crystal clock input is 12 MHZ. According to the equation, user can decide the values of

pre-scalar and counter to get the desired interrupt frequency. Table 2 demonstrates several reference values.

Frequency (1/sec) [Pre-Scalar] [Counter]

1 0xC 0xF4240

100 0xC 0x2710

1000 0xC 0x3E8

Table 2 Timer Reference Setting Values

 NUC501 IP Programming Guide

- 96 -

12.4.2. Initialization

The driver should set the operating mode, pre-scalar and counter before enable the timer interrupt. The

timer supports one-shot, periodic, toggle and uninterrupted mode for user to implement the counting

scheme.

 In one-shot mode, the interrupt signal is generated once and it‟s not happen again unless the

timer is re-enabled later.

 In periodic mode, the interrupt signal is generated periodically.

 Toggle mode

 Uninterrupted mode

Figure 12-3 shows the initialization sequence.

 NUC501 IP Programming Guide

- 97 -

Start

Disable Timer

Set Operating

Mode,

Prescaler

Set Counter

Enable Timer

End

 Clear [CEN] and [IE] of TCSRx

TCR Register

30 CEN : Counter Enable

29 IE : Interrupt Enable

28:27 Operating Mode

00 : One Shot

01 : Periodic

10 : Toggle

11 : Uninterrupted

7:0 Pre-Scaler

TICR0 Register

25:0 Counter

Set [CEN] and [IE] of TCR

Figure 12-3 Timer Initialization Sequence

12.4.3. Timer Interrupt Service Routine

A common timer interrupt service routine is very simple. It increases the software counter and clears the

timer interrupt status. Figure 12-4 shows the flow chart of such an interrupt service routine.

 NUC501 IP Programming Guide

- 98 -

Start

Increase

Software

Counter

Clear Timer

Interrupt

Status

End

TISR Register

[0] TIF0 : If TIF0 bit is 1, write TIF0 bit by 1 to

clear Timer 0 Interrupt.

[1] TIF1 : If TIF0 bit is 1, write TIF1 bit by 1 to

clear Timer 1 Interrupt.

Figure 12-4 Timer Interrupt Service Routine

12.4.4. Watchdog Timer

The register WTCR is used to control watchdog timer. The bit WTR should be set before enable watchdog

timer. It ensures that the watchdog timer restarts from a known state. Table 3 lists the Watchdog Timeout

period. Figure 12-5 and Figure 12-6 illustrate how to use watchdog timer.

WTIS[5:4] Interrupt

Time-out

Reset Time-out Actual time

WTCLK = 1

Actual time

WTCLK = 0

00 214 clocks 214 + 1024 clocks 0.371 sec 1.450 msec

01 216 clocks 216 + 1024 clocks 1.419 sec 5.546 msec

10 218 clocks 218 + 1024 clocks 5.614 sec 21.93 msec

11 220 clocks 220 + 1024 clocks 22.39 sec 87.46 msec

Table 3 WatchDog Timer Reset Time (Using 12MHz crystal)

 NUC501 IP Programming Guide

- 99 -

Start

Reset WatchDog

Timer

Select Time-Out

Interval and

Enable

WatchDog Timer

End

Program WTR bit by 1 to WTCR to reset the

WatchDog Timer

WTCR Register

7 WTE : WatchDog Timer Enable

6 WTIE : WatchDog Timer Interrupt Enable

5:4 WTIS : WatchDog Timer Interrupt Select

3 WTIF : WatchDog Timer Interrupt Flag

2 WTRF : WatchDog Timer Reset Flag

1 WTRE : WatchDog Timer Reset Enable

0 WTR : WatchDog Timer Reset

Figure 12-5 Enable Watchdog Timer

Start

Clear Interrupt

Flag and Reset

WatchDog

Timer

End

WTCR Register

[3] WTIF : WatchDog Timer Interrupt Flag

[0] WTR : WatchDog Timer Reset

 // Clear Bit 3 to clear WatchDog Timer

 Interrupt

 // Reset WatchDog Timer by Setting Bit

 0

Figure 12-6 Watchdog Timer ISR

 NUC501 IP Programming Guide

- 100 -

13. UART

13.1. Overview

The UART interface controller module includes two channels, UART0~UART1. One of them is equipped

with flow control function High Speed UART and the other is a Normal Speed UART. The Universal

Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data characters

received from the peripheral, and a parallel-to-serial conversion on data characters received from the CPU.

There are six types of interrupts, they are, transmitter FIFO empty interrupt(Int_THRE), receiver threshold

level reaching interrupt (Int_RDA), line status interrupt (overrun error or parity error or framing error or

break interrupt) (Int_RLS) , time out interrupt (Int_Tout), MODEM status interrupt (Int_Modem) and

Wake up status interrupt (Int_WakeUp).

The two UART Interface Controller that one have a 64-byte transmitter FIFO (TX_FIFO) and a 64-byte

(plus 3-bit of error data per byte) receiver FIFO (RX_FIFO) has been built in to reduce the number of

interrupts presented to the CPU and the other have a 16-byte transmitter FIFO (TX_FIFO) and a 16-byte

(plus 3-bit of error data per byte) receiver FIFO (RX_FIFO) has been built in to reduce the number of

interrupts presented to the CPU. The CPU can completely read the status of the UART at any time during

the operation. The reported status information includes the type and condition of the transfer operations

being performed by the UART, as well as any error conditions (parity error, overrun error, framing error,

or break interrupt) found. The UART includes a programmable baud rate generator that is capable of

dividing crystal clock input by divisors to produce the clock that transmitter and receiver needed. The baud

rate equation is Baud Out = crystal clock / 16 * [Divisor + 2].

The UART includes the following features:

 64 byte/16 byte entry FIFOs for received and transmitted data payloads

 Flow control functions (CTS, RTS) are supported.

 Programmable baud-rate generator that allows the internal clock to be divided by 2 to (2^16 + 1)

to generate an internal 16X clock.

 Fully programmable serial-interface characteristics:

 5-, 6-, 7-, or 8-bit character

 Even, odd, or no-parity bit generation and detection

 1-, 1&1/2, or 2-stop bit generation

 Baud rate generation

 False start bit detection.

 Loop back mode for internal diagnostic testing

 NUC501 IP Programming Guide

- 101 -

13.2. Block Diagram

TX_FIFO
(64/16)

UART
Controller

Baud Rate
Generator

Rx shift
register

Tx shift
register

APB BUS

External clock SINSOUT

RX_FIFO
(64/16)

13.3. Registers

R : Read only, W : Write only, R/W : Both read and write, C : Only value 0 can be written

UART_BA (UA_BA) = B800_C000

Channel0: UART_Base0 (High Speed) = B800_C000

Channel1: UART_Base1 (Normal Speed) = B800_C100

Register Address R/W Description Reset Value

UA_RBR UA_BA + 0x00 R Receive Buffer Register (DLAB = 0) Undefined

UA_THR UA_BA + 0x00 W Transmit Holding Register (DLAB = 0) Undefined

UA_IER UA_BA + 0x04 R/W Interrupt Enable Register (DLAB = 0) 0x0000_0000

UA_DLL UA_BA + 0x00 R/W Divisor Latch Register (LS) (DLAB = 1) 0x0000_0000

UA_DLM UA_BA + 0x04 R/W Divisor Latch Register (MS) (DLAB = 1) 0x0000_0000

UA_IIR UA_BA + 0x08 R Interrupt Identification Register 0x8181_8181

UA_FCR UA_BA + 0x08 W FIFO Control Register Undefined

UA_LCR UA_BA + 0x0C R/W Line Control Register 0x0000_0000

UA_MCR UA_BA + 0x10 R/W Modem Control Register 0x0000_0000

 NUC501 IP Programming Guide

- 102 -

UA_LSR UA_BA + 0x14 R Line Status Register 0x6060_6060

UA_MSR UA_BA + 0x18 R/W Modem Status Register 0x0000_0000

UA_TOR UA_BA + 0x1C R/W Time Out Register 0x0000_0000

13.4. Functional Description

13.4.1. Clock Source

The UART clock source can be External Crystal, PLL, and PLL/2. It can be set in the Clock Source Select

Control Register.

Note: UART clock must slower than APB clock

13.4.2. Baud Rate

The UART includes a programmable baud rate generator. The crystal clock input is divided by divisor to

produce the clock that transmitter and receiver need. The equation is

Baud Rate = APB clock / (16 * [Divisor + 2])

The UA_DLL and UA_DLM registers consist of the low byte and high byte of the divisor. The DLL and

DLM registers aren‟t accessible until the DLAB bit of LCR register is set 1. The driver should program, the

correct value into the UA_DLL/UA_DLM registers according to the desired baud rate. Table-4 lists some

general baud rate settings.

Baud Rate DLM DLL Real Error rate [%]

115200 0 6 117187.5 1.725

57600 0 14 58593.75 1.725

38400 0 22 39062.5 1.725

19200 0 47 19132.65 -0.35

9600 0 96 9566.33 -0.35

Table-4 Baud rate sample

13.4.3. Initializations

Before the transfer operation starts, the serial interface of UART must be programmed. The driver should

set the baud rate, parity bit, data bit and stop bit. If the transfer operation is done triggered by interrupt, the

TX, RX and RLS interrupts need to be enabled. Figure 13-1 shows the initialization flow of UART.

 NUC501 IP Programming Guide

- 103 -

 NUC501 IP Programming Guide

- 104 -

Start

Set Baud Rate

Set parity bit , Data bits, and

Stop bit

Set Rx FIFO Trigger Level

Reset Tx, Rx FIFO

Set Time-Out Register

Enable Tx, Rx, RLS interrupt

End

1. Set 1 to DLAB bit of UA_LCR Register

2. Write divisor value to DLL, DLM

UA_LCR Registers

7 DLAB : Divider Latch Access Bit

6 BCB : Break Control Bit

5 SPE : Stick Parity Bit

4 EPE : Even Parity Enable

3 PBE : Parity Bit Enable

2 NSB : Number of "STOP" bit

0 One "STOP" bit

1 1.5 "STOP" bit

1:0 WLS : Word Length Select

00 5 bits

01 6 bits

10 7 bits

11 8 bits

FCR Register

7:4 RFITL : Rx FIFO Interrupt Trigger Level

0000 1 Byte

0001 4 Bytes

0010 8 Bytes

0011 14 Bytes

0100 30/14 Bytes (High speed/Normal speed)

0101 46/14 Bytes (High speed/Normal speed)

0110 62/14 Bytes (High speed/Normal speed)

others 62/14 Bytes (High speed/Normal speed)

2 TFR : Tx FIFO Reset

1 RFR : Rx FIFO Reset

IER Register

3 MSIE : Modem Status Interrupt Enable

2 RLSIE : Receive Line Status Interrupt Enable

1 THREIE : Transmit Holding Register Empty

Interrupt Enable

0 RADIE : Receive Data Available Interrupt Enable

and Time-out Interrupt Enable.

TOR

UA_IER[4] & UA_IER[0] RADIE should be

enabled.

6:0 TOIC: Counter for Timeout (unit by baudrate)

Set 0 to DLAB bit of UA_LCR before write UA_IER

Figure 13-1 UART initialization

13.4.4. Polled I/O Functions

The driver can transmit and receive data through UART by polling mode. The poll functions check UART

buffer by reading status register. If there‟s at least one data byte available in receive FIFO, the [RFDR] bit

is set 1. It indicates that driver can read receive FIFO to get new data bytes. If the transmitter is empty, the

[TE] bit is set 1. Then the data bytes can be written into the transmit FIFO. The data bytes in the transmit

FIFO will be shifted to SOUT serially. Figure13-2 and Figure13-3 show the programming flow of transmit

data and receive data in polling mode.

 NUC501 IP Programming Guide

- 105 -

Start

End

Read LSR

TE== 1 ?

Write 16/64 data bytes to

THR

Y

N

Figure 13-2 Transmit data in polling mode

 NUC501 IP Programming Guide

- 106 -

Start

Read LSR

RFDR bit == 1 ?

End

Read one data byte

from RBR

N

Y

Figure 13-3 Receive data in polling mode

13.4.5. Interrupted I/O Functions

The data bytes also can be transmitted and received through UART by interrupt control. The interrupt

service routine is responsible to move data bytes from driver‟s buffer to transmit FIFO whenever the THRE

interrupt happens. If RDA or TOUT interrupts occurs, the interrupt service routine should move the data

bytes from receive FIFO to driver‟s buffer.

In interrupt mode, the input and output functions are different from the polling functions. They read or

write the driver‟s buffer instead of Tx /Rx FIFO. The output function writes the data bytes into driver‟s

buffer and then enables THRE interrupt. The ISR will read the data bytes from driver‟s buffer and write

them to the Tx FIFO when the transmitter FIFO empty interrupt occurs, or get the data bytes from Rx FIFO

the driver receiving buffer when the receiver threshold level reaching interrupt occurs. When the input

function is called, it reads the data bytes from driver‟s receiving buffer and then returns. Figure13-4,

Figure13-5 and Figure13-6 show the flow of output function, input function, and interrupt service routine.

 NUC501 IP Programming Guide

- 107 -

Start

Write one data byte to

driver's buffer

Is buffer available

for another data

byte ?

Enable THRE interrupt

Return the number of written

data bytes

End

N

Y

Figure 13-4 Output function in interrupt mode

 NUC501 IP Programming Guide

- 108 -

Start

Is there at least

one data byte in

driver's buffer ?

Read one data bytes from

driver's buffer

Read the dresired

numbers ?

Return the number of read

data bytes

End

N

N

Y

Y

Figure 13-5 Input functions in interrupt mode

 NUC501 IP Programming Guide

- 109 -

Start

ReadISR

Is THRE Interrupt ?
Move data bytes from

driver buffer to Tx FIFO

Is data byte

available in

driver's buffer ?

Disable THRE interrupt

Is RDA or TOUT

interrupt ?

Read LSR

Move data byte

from Rx FIFO

to driver buffer

End

IIR[3:0] Interrupt Type

0110 RLS : Receiver Line Status

0100 RDA : Receive Data Available

1100 TOUT : Received FIFO Timeout

0010 THRE : Transmitter Holding

Register Empty

0000 MOS : Modem Status

Y

N

N

N

N

Y

Figure 13-6 Interrupt Service Routine

 NUC501 IP Programming Guide

- 110 -

14. USB

This document introduces how to properly program the USB device controller in this chips. In section 14.4,

it takes a brief introduction of USB, and illustrates the fundamental flows in USB. Section 14.5 shows how

to control the registers of the USB device controller to accomplish data transfer in USB.

14.1. Block Diagram

Figure 14-1 USB Block Diagram

14.2. Registers

Register Address R/W Description Reset Value

USB_BA = 0xB100_9000

AHB Bus

RXDP

RXDM

S0

S1

SFR

SRAM

512

Bytes

SIE UIE

flo_debounce dpll int

Buffer
Control

PAD Clock
Control

AIC

Wakeup

AHB Slave Wrapper

Transceiver

D+

D-

PAD

Endpoints

USB_TOP

 NUC501 IP Programming Guide

- 111 -

IEF USB_BA+0x000 R/W Interrupt Enable Flag 0x0000_0000

EVF USB_BA+0x004 R Interrupt Event Flag 0x0000_0000

FADDR USB_BA+0x008 R/W Function Address 0x0000_0000

STS USB_BA+0x00C R,/W System state 0x0000_00x0

ATTR USB_BA+0x010 R/W Bus state & attribution 0x0000_0040

FLODET USB_BA+0x014 R Floating detect 0x0000_0000

BUFSEG USB_BA+0x018 R/W Buffer Segmentation 0x0000_0000

USBCFG USB_BA+0x01C R/W USB configuration, internal test only 0x0000_0000

BUFSEG0 USB_BA+0x020 R/W Buffer Segmentation of endpoint 0 0x0000_0000

MXPLD0 USB_BA+0x024 R/W Maximal payload of endpoint 0 0x0000_0000

CFG0 USB_BA+0x028 R/W Configuration of endpoint 0 0x0000_0000

CFGP0 USB_BA+0x02C R/W
stall control register and In/out ready clear flag of

endpoint 0
0x0000_0000

BUFSEG1 USB_BA+0x030 R/W Buffer Segmentation of endpoint 1 0x0000_0000

MXPLD1 USB_BA+0x034 R/W Maximal payload of endpoint 1 0x0000_0000

CFG1 USB_BA+0x038 R/W Configuration of endpoint 1 0x0000_0000

CFGP1 USB_BA+0x03C R/W
stall control register and In/out ready clear flag of

endpoint 1
0x0000_0000

BUFSEG2 USB_BA+0x040 R/W Buffer Segmentation of endpoint 2 0x0000_0000

MXPLD2 USB_BA+0x044 R/W Maximal payload of endpoint 2 0x0000_0000

CFG2 USB_BA+0x048 R/W Configuration of endpoint 2 0x0000_0000

CFGP2 USB_BA+0x04C R/W
stall control register and In/out ready clear flag of

endpoint 2
0x0000_0000

BUFSEG3 USB_BA+0x050 R/W Buffer Segmentation of endpoint 3 0x0000_0000

MXPLD3 USB_BA+0x054 R/W Maximal payload of endpoint 3 0x0000_0000

CFG3 USB_BA+0x058 R/W Configuration of endpoint 3 0x0000_0000

CFGP3 USB_BA+0x05C R/W
stall control register and In/out ready clear flag of

endpoint 3
0x0000_0000

BUFSEG4 USB_BA+0x060 R/W Buffer Segmentation of endpoint 4 0x0000_0000

MXPLD4 USB_BA+0x064 R/W Maximal payload of endpoint 4 0x0000_0000

CFG4 USB_BA+0x068 R/W Configuration of endpoint 4 0x0000_0000

CFGP4 USB_BA+0x06C R/W
stall control register and In/out ready clear flag of

endpoint 4
0x0000_0000

BUFSEG5 USB_BA+0x070 R/W Buffer Segmentation of endpoint 5 0x0000_0000

MXPLD5 USB_BA+0x074 R/W Maximal payload of endpoint 5 0x0000_0000

 NUC501 IP Programming Guide

- 112 -

CFG5 USB_BA+0x078 R/W Configuration of endpoint 5 0x0000_0000

CFGP5 USB_BA+0x07C R/W In ready clear flag of endpoint 5 0x0000_0000

USBBIST USB_BA+0x0A0 R/W USB buffer test register 0x0000_0000

14.3. Introduction to USB

There are four types of pipes in USB, and each of them defines a specified purpose to carry data on USB.

They are Control Pipe, Bulk Pile, Isochronous Pipe and Interrupt Pipe. Control Pipe is the default pipe to

be established once the USB is connected. It provides the service for USB host to retrieve the basic

information of an USB device. We take “Get Device Descriptor” as an example. This operation can be

divided into three stages. The first is setup stage that host sends setup command to a device. The second is

data stage that host receive data from a device. The third is status stage that host send ACK to device to

complete the operation. The following figures help reader to understand the concept.

Setup Stage

Set Up

Packet

DATA

Packet

ACK

Packet

Setup-token

interrupt
Setup-data

Available

interrupt

Transfer from Host to Device

Transfer from Device to Host

Note:

Figure 14-2 DATA Packet above represents the command of this stage.

 NUC501 IP Programming Guide

- 113 -

Data Stage

IN

Packet

NAK

Packet

IN

Packet

DATA

Packet

ACK

Packet

A NAK token is sent for the data stage, until the Control EP’s

RAM is loaded with data by the local-CPU.

Data

Transmitted

Interrupt

The data stage is completed, when the Control EP’s RAM is

loaded with data by the local-CPU.

Figure 14-3 Data Packet above represents the device information.

Status Stage

DATA

Packet

NAK

Packet

OUT

Packet

DATA

Packet

ACK

Packet

A NAK token is sent for the status stage, until the MXPLD is

written.

Status

Completion

Interrupt

The status stage is completed, when the the MXPLD is written.

OUT

Packet

Figure 14-4 Data Packet above usually is zero-packet which represents ACK.

 NUC501 IP Programming Guide

- 114 -

As to other pipes, they only have data stage. Bulk Pipe and Interrupt Pipe have ACK or NACK Packet, but

Isochronous does not have.

14.4. Function Descriptions

14.4.1. Registers Programming

This section shows readers to program registers to operate the USB device controller properly. Readers can

know how to initialize the USB device controller and how to transfer data through the USB device

controller.

14.4.2. Initialization

 Give endpoints with proper settings such as endpoint number, endpoint direction and

isochronous bit.

 Allocate buffer for endpoints.

 Set device address with initial value zero.

14.4.3. Control Transfer

 Allocate buffer for setup packet (BUFSEG, 0x18).

 Allocate buffer for Control-In and Control-Out endpoints (BUFSEG0 ~ BUFSEG5)

 Parse Setup Packet (Setup in EVF asserted) from allocated buffer

 If it is a control out command, fill MXPLDx to retrieve data from buffer of the endpoint.

 If it is a control in command, fill data into buffer and write MXPLDx with the size of data.

Here is an illustration of control flow.

 NUC501 IP Programming Guide

- 115 -

 NUC501 IP Programming Guide

- 116 -

14.4.4. Others’ Transfer

 Fill MXPLDx to retrieve data from buffer of the endpoint for data out.

 Fill data into buffer and write MXPLDx with the size of data for data in.

An illustration is shown as follows.

14.5. Code Section

14.5.1. Initialization

void UsbIbrCfg (void)

{

 outp8 (FADDR, 0x00);

 outp16 (BUFSEG, BUF_SETUP); // Setup

 outp8 (CFGP0, EPT_CFGP); // EP0 CTRL IN

 outp16 (CFG0, CFG0_SETTING);

 NUC501 IP Programming Guide

- 117 -

 outp16 (BUFSEG0, BUF0_SETTING);

 outp8 (CFGP1, EPT_CFGP); // EP0 CTRL OUT

 outp16 (CFG1, CFG1_SETTING);

 outp16 (BUFSEG1, BUF1_SETTING);

 outp8 (CFGP2, EPT_CFGP); // EP2 BULK IN

 outp16 (CFG2, CFG2_SETTING);

 outp16 (BUFSEG2, BUF_BULK1);

 outp8 (CFGP3, EPT_CFGP); // EP3 BULK OUT

 outp16 (CFG3, CFG3_SETTING);

 outp16 (BUFSEG3, BUF_BULK0);

}

14.5.2. Control Transfer - Get Descriptor

// Get Descriptor

 case GET_DESCRIPTOR:

 {

 g_u16Len = g_au8UsbSetup[6] + (g_au8UsbSetup[7] << 8);

 switch (g_au8UsbSetup[3])

 {

 // Get Device Descriptor

 case DESC_DEVICE:

 {

 g_u16Len = Minimum (g_u16Len, LEN_DEVICE);

 for (g_u8i = 0; g_u8i < g_u16Len; g_u8i++)

 g_au8UsbCtrl[g_u8i] = c_au8DeviceDesc[g_u8i];

 break;

 }

 // Get Configuration Descriptor

 case DESC_CONFIG:

 {

 g_u16Len = Minimum (g_u16Len, c_au8ConfigDesc[2]);

 for (g_u8i = 0; g_u8i < g_u16Len; g_u8i++)

 g_au8UsbCtrl[g_u8i] = c_au8ConfigDesc[g_u8i];

 break;

 }

 NUC501 IP Programming Guide

- 118 -

 // Get String Descriptor

 case DESC_STRING:

 {

 // Get Language

 if (g_au8UsbSetup[4] == 0)

 {

 g_u16Len = Minimum (g_u16Len, c_au8StringLang[0]);

 for (g_u8i = 0; g_u8i < g_u16Len; g_u8i++)

 g_au8UsbCtrl[g_u8i] = c_au8StringLang[g_u8i];

 break;

 }

 // Get String Descriptor

 g_u16Len = Minimum (g_u16Len,

c_pau8String[g_au8UsbSetup[2]][0]);

 for (g_u8i = 0; g_u8i < g_u16Len; g_u8i++)

 g_au8UsbCtrl[g_u8i] =

c_pau8String[g_au8UsbSetup[2]][g_u8i];

 break;

 }

 default:

 return FALSE;

 }

 outp16 (CFG0, DATA1 (CFG0_SETTING));

 outp16 (MXPLD0, g_u16Len);

 g_u8Flag = FLAG_OUT_ACK;

14.5.3. Bulk Out

void UsbIbrWrite (void)

{

 if (g_u32Length > MAX_PACKET_SIZE)

 {

 if (inp16 (BUFSEG3) == BUF_BULK0)

 {

 outp16 (BUFSEG3, BUF_BULK1);

 outp16 (MXPLD3, MAX_PACKET_SIZE);

 for (g_u8i = 0; g_u8i < MAX_PACKET_SIZE; g_u8i++)

 NUC501 IP Programming Guide

- 119 -

 *(UINT8 *)(g_u32Address + g_u8i) = g_au8UsbBulk0[g_u8i];

 }

 else

 {

 outp16 (BUFSEG3, BUF_BULK0);

 outp16 (MXPLD3, MAX_PACKET_SIZE);

 for (g_u8i = 0; g_u8i < MAX_PACKET_SIZE; g_u8i++)

 *(UINT8 *)(g_u32Address + g_u8i) = g_au8UsbBulk1[g_u8i];

 }

 g_u32Address += MAX_PACKET_SIZE;

 g_u32Length -= MAX_PACKET_SIZE;

 }

 else

 {

 if (inp16 (BUFSEG3) == BUF_BULK0)

 {

 for (g_u8i = 0; g_u8i < g_u32Length; g_u8i++)

 *(UINT8 *)(g_u32Address + g_u8i) = g_au8UsbBulk0[g_u8i];

 }

 else

 {

 for (g_u8i = 0; g_u8i < g_u32Length; g_u8i++)

 *(UINT8 *)(g_u32Address + g_u8i) = g_au8UsbBulk1[g_u8i];

 }

 g_u32Address += g_u32Length;

 g_u32Length = 0;

 g_u8BulkState = BULK_IN;

 }

}

 NUC501 IP Programming Guide

- 120 -

15. Revision History

Version Date Description

V1.00 Feb. 20, 2009  Created

 NUC501 IP Programming Guide

- 121 -

Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in

equipment or systems intended for surgical implantation, atomic energy control instruments,

aircraft or spacecraft instruments, transportation instruments, traffic signal instruments,

combustion control instruments, or for any other applications intended to support or sustain life.

Furthermore, Nuvoton products are not intended for applications whereby failure could result or

lead to personal injury, death or severe property or environmental damage.

Nuvoton customers using or selling these products for such applications do so at their own risk and

agree to fully indemnify Nuvoton for any damages resulting from their improper use or sales.

	Introduction
	Block Diagram

	System Manager (SYS)
	Overview
	System Memory Map
	AHB Bus Arbitration
	Priority Mode
	Fixed Priority Mode
	Round Robin Priority Mode

	Clock Controller
	SRAM Controller
	Power Manager Mode

	Advanced Interrupt Controller (AIC)
	Overview
	Block Diagram
	Interrupt Source
	Registers
	Function Description
	Interrupt Channel, Priority and Source Type
	Fake Interrupt
	Interrupt Handling
	Interrupt Masking
	Interrupt Clearing and Setting
	ICE/Debug Mode
	FIQ/IRQ Handler Control Sequence

	SPI Synchronous Serial Interface Controller
	Overview
	Block Diagram
	Registers
	Function Description
	Command mode
	DMA mode
	DMM mode
	Fetch code from SPI memory
	Application limitations

	Analog to Digital Converter (ADC)
	Overview
	Block Diagram
	Registers
	Function Description
	ADC normal mode operation
	Audio recording
	Low voltage detection

	Analog Processing Unit (APU)
	Overview
	Block Diagram
	Registers
	Function Description
	Sampling rate control
	Threshold and DAC control
	Equalizer control
	APU example

	I2C Synchronous Serial Interface Controller
	Overview
	Block Diagram
	Registers
	Functional Descriptions
	Limitation
	A complete data transfer
	START and STOP condition
	Acknowledge
	Mater read and write
	Example of an I2C-bus configuration using two micro-controllers
	Hardware I2C
	Software I2C
	Arbitration

	Relative registers definition

	General Purpose I/O (GPIO)
	Overview
	Block Diagram
	Registers
	Functional Description
	Pin description
	PAD Function Setting
	GPIO Output Mode
	GPIO Input Mode
	GPIO Interrupt

	Pulse Width Modulation (PWM)
	Overview
	Block Diagram
	Registers
	Functional Description
	PWM Timer / Capture Channel
	PWM Timer
	Prescaler and clock selector
	Basic Timer Operation
	PWM Double Buffering and Automatic Reload
	Modulate Duty Ratio
	Dead-Zone Generator
	PWM Timer Start Procedure
	PWM Timer Stop Procedure

	Capture
	Capture Description
	Capture Start Procedure
	Capture Basic Timer Operation

	Real Time Clock (RTC)
	Overview
	Block Diagram
	Registers
	Functional Description
	Initialization
	RTC Read/Write Enable
	Frequency Compensation
	Time and Calendar counter
	Day of the week counter
	Time tick interrupt
	RTC register property
	Application Note

	Programming Note

	Serial Peripheral Interface Controller (SPI Master/Slave)
	Overview
	SPI Serial Interface Controller (Master/Slave)

	Block Diagram
	SPI Block Diagram (Master/Slave)
	SPI Timing Diagram (Master/Slave)

	Registers
	Functional Description
	Active SPI Controller
	Initialize SPI Controller
	SPI Controller Transmit/Receive
	SPI Programming Example

	Timer and WDT
	Overview
	General Timer Controller
	Watchdog Timer

	Block Diagram
	Registers
	Functional Description
	Interrupt Frequency
	Initialization
	Timer Interrupt Service Routine
	Watchdog Timer

	UART
	Overview
	Block Diagram
	Registers
	Functional Description
	Clock Source
	Baud Rate
	Initializations
	Polled I/O Functions
	Interrupted I/O Functions

	USB
	Block Diagram
	Registers
	Introduction to USB
	Function Descriptions
	Registers Programming
	Initialization
	Control Transfer
	Others’ Transfer

	Code Section
	Initialization
	Control Transfer - Get Descriptor
	Bulk Out

	Revision History

