

Nov. 28, 2023 Page 1 of 14 Rev 1.00

M460 Series

Document Information

Application
This example code uses the M460 series microcontroller (MCU) to
port uCOSii and execute 4-CANFD transmission and reception.

BSP Version M460_Series_BSP_CMSIS_V3.00.002

Hardware NuMaker-M467HJ V1.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

4-CANFD Transmit-Receive Code in M460 uCOSii

Example Code Introduction for 32-bit NuMicro® Family

http://www.nuvoton.com/

Nov. 28, 2023 Page 2 of 14 Rev 1.00

M460 Series

1. Overview

This example code uses the M460 series microcontroller (MCU) to port uCOSii, and
respectively establishes tasks for 4 CANFDs that are responsible for sending and receiving
messages.

1.1 Principle

The M460 CANFD has a powerful function. A maximum of 32 message buffers can be
configured to wait for sending. As shown in Figure 1-1, the number of message buffers and the
first address of buffers are configured by the TXBC register, which is in the function
CANFD_Tx_Init(). In a multitasking system, the task that needs to send CANFD messages can
exclusively use several buffers to send messages, so that CANFD does not need to be
managed with semaphores.

Figure 1-1 M460 CANFD Tx Register

The data structure of each message to be sent is composed of “Configuration + Data (maximum
64 bytes)”. Figure 1-2 shows the data structure of the sending messages.

Nov. 28, 2023 Page 3 of 14 Rev 1.00

M460 Series

Figure 1-2 Data Structure of Sending Messages

When receiving messages, the messages on the CANFD bus are filtered by up to 128 groups

of standard SID and up to 64 groups of extended XID. Then, the received messages can be

placed in a specified space of the 64 buffers. A task in the multitasking system can monopolizes
a receive buffer. In this way, the receiving of CANFD messages can be managed without
semaphore. The received messages can also be placed in FIFO0 or FIFO1 with a depth of 64
levels as shown in Figure 1-3. When there are a plenty of messages on bus, FIFO can reduce
the process time of CPU. The received messages of this code are put into the respective FIFO1
of CANFD0~CANFD3.

Figure 1-3 Diagram of CANFD Reception

Figure 1-4 shows the data structure of the SID used to filter messages when received.

Nov. 28, 2023 Page 4 of 14 Rev 1.00

M460 Series

Figure 1-4 SID Structure

Figure 1-5 shows the data structure of the XID used to filter messages when reception.

Figure 1-5 XID Structure

1.2 Demo Result

Figure1-6 shows the execution result of this code on the NuMAKE-M467HJ V1.0 board which
only has one CANFD transceiver.

Figure1-6 Programming Results

If connecting interfaces CANFD0~CANFD3 to one CANFD bus and run this code, you will
obtain the information shown in Figure 1-7. Task0~Task3 indicates that tasks are being

Nov. 28, 2023 Page 5 of 14 Rev 1.00

M460 Series

executed and CANFD0~CANFD3 indicates that tasks are being sent. The CAN0~CAN3
indicates the messages received by the corresponding CANFD interface. After each CANFD

sends messages, the other three CANFDs will receive messages.

Figure 1-7 Printed Result of 4-CANFD Transceivers Linked Together

Nov. 28, 2023 Page 6 of 14 Rev 1.00

M460 Series

2. Code Description

This example code has ported uCOSii. For the contents, please refer to
EC_M480_uCOS_II_Porting_Readme that can be downloaded at
https://www.nuvoton.com.cn/resource-download.jsp?tp_GUID=EC012022101106314002.
This code establishes 6 tasks. task_Highest() is the task with the highest priority in which
system beat timer must be configured and started at the beginning. UART0 printing is also in
this task. If other tasks need UART0 printing information, the data to be printed must be sent
through queue Q to avoid conflicts in accessing UART0.

The task0~task3 control CANFD0~CANFD3 to send messages to the CANFD bus.

The CANFD0~CANFD3 will send a semaphore (semaphore plus 1) in the corresponding
interrupt as soon as a message is received. Outside the interrupt, the semaphore will be
checked and the message will be read out from the corresponding FIFO1. In order to get a
simple routine, all printing messages will be printed in task_A. For the messages to be printed
in time, task_A generally has a higher priority than other tasks that need to print information
through UART0.

The pin function configuration, communication rate, and send/receive initialization code for
CANFD are configured at the beginning of the main() function. Whether to send CAN packets
or CANFD packets is also set here.

//== Configure CANFD0 =======================================
 CANFD0->CCCR = CANFD_CCCR_CCE_Msk | CANFD_CCCR_INIT_Msk | CANFD_CCCR_BRSE_Msk |
CANFD_CCCR_FDOE_Msk;

#ifndef __M467SJHAE // If test this project on NuMaker-M467HJ board
 SET_CAN0_RXD_PJ11(); // Set PJ multi-function pins for CAN FD0 RXD and TXD
 SET_CAN0_TXD_PJ10();
#else // If test this project on M467SJHAE board
 SET_CAN0_RXD_PB10();
 SET_CAN0_TXD_PB11();
#endif
 CANFD_BitRate_Init(CANFD0);
 // 32-Txbuf,StartAddress=0xE0 Please reference CANFD_TxBuff[32]
 CANFD_Tx_Init(CANFD0, 32, 0xE0);
 CANFD0_RX_Initial(CANFD0);
// CANFD0->CCCR = CANFD_CCCR_BRSE_Msk | CANFD_CCCR_FDOE_Msk ; // CANFD frame
 CANFD0->CCCR = 0 ; // CAN frame,Write is OK after 2 CLKs

Correctly configuring the sampling point for reception is the key to improve the reliability of CAN
or CANFD communication. Considering the transmission time, DTSG1 is generally longer than
DTSG2. This is configured by the function CANFD_BitRate_Init(). DTSG1 is configured to
occupy 75% of a bit-time in this code as shown Figure 2-1.

https://www.nuvoton.com.cn/resource-download.jsp?tp_GUID=EC012022101106314002

Nov. 28, 2023 Page 7 of 14 Rev 1.00

M460 Series

Figure 2-1 Sample Point of One Bit

void CANFD_BitRate_Init(CANFD_T *psCanfd)
{
 // CANFD_CLk = 200M/10 = 20MHz Baud Rate = 20M/20 = 1Mbps

 psCanfd->NBTP = (3 << 25) + // NSJW = 3+1 =4 CLK
 (0 << 16) + // NBRP = 0+1 =1 // prescaler =1
 (13 << 8) + // NTSG1 = 13+1 =14 CLK
 (5 - 1) ; // NTSG2 = 5 CLK // One bit =1+14+5 =20 CLK

// If CANFD frame and permit data-rate change, define date rate as following.

// psCanfd->DBTP = ((1 - 1) << 16) + // DBRP = 1 prescaler
// ((15 - 1) << 8) + // DTSG1 = 15 CLK
// ((5 - 1) << 4) + // DTSG2 = 5 CLK // One bit = 15+5 = 20 CLK
// (4 - 1) ; // DSJW = 4 CLK
}

The CANFD_Tx_Init() function sets the first address of the sending buffer. Each buffer
configured can store a maximum of 64 bytes. The actual number of bytes to be sent is defined

when the packet is sent.

void CANFD_Tx_Init(CANFD_T *psCanfd, int16_t TxBuff_Quantity, uint16_t TxBuff_StartAddr)
{
 psCanfd->TXBC = (TxBuff_Quantity << CANFD_TXBC_NDTB_Pos)
 + TxBuff_StartAddr ; // Start address of messages RAM

 psCanfd->TXESC = 7 << CANFD_TXESC_TBDS_Pos; // 7 mean 64 Bytes
}

The function CANFD0_RX_Initial() is the CANFD0 reception configuration. At first, the message
buffer is configured to hold 64 bytes. Then the offset address of the SID and XID are configured
in the dedicated RAM area. The code in ”#if 1” is the configuration code to store reception
messages in FIFO1 and refuse remote frames. The #else code is a few examples to only accept
some SID or XID values message.

/*---*/
/* Init CANFD0 Rx */
/*---*/

Nov. 28, 2023 Page 8 of 14 Rev 1.00

M460 Series

void CANFD0_RX_Initial(CANFD_T *psCanfd)
{
 // 0=>8Byte, 1=>12Byte, 2=>16Byte, 3=>20Byte,4=>24Byte,5=>32Byte,6=>48Byte, 7=>64Byte
 psCanfd->RXESC = (psCanfd->RXESC & (~CANFD_RXESC_F1DS_Msk)) | (7 <<
CANFD_RXESC_F1DS_Pos); // 7 mean MAX 64 Bytes

 psCanfd->RXF1C = (30 << CANFD_RXF1C_F1WM_Pos) // watermark = 60 messages
 | (32 << CANFD_RXF1C_F1S_Pos) // FIFO1 can hold 64 messages
 | 0x9E0 ; // FIFO1 start address =0x40020000 +0x9E0

 psCanfd->SIDFC = (24 << 16) + 0 ; // 24-SID at 0 address
 psCanfd->XIDFC = (16 << 16) + 0x60 ; // 16-XID at 0x60 address

#if 1
 CANFD0_SID_Buff[0].VALUE = CANFD_RX_FIFO1_STD_MASK(0, 0) ; // receive all SID messages

 CANFD0_XID_Buff[0].LOWVALUE =CANFD_RX_FIFO1_EXT_MASK_LOW(0) ;
 CANFD0_XID_Buff[0].HIGHVALUE=CANFD_RX_FIFO1_EXT_MASK_HIGH(0); //receive all XID

 CANFD0->GFC = 3 ; // reject remote frames

#else
 CANFD0_SID_Buff[0].VALUE = CANFD_RX_FIFO1_STD_MASK(0x110, 0x7F0) ; // SID, Mask
 CANFD0_SID_Buff[1].VALUE = CANFD_RX_FIFO1_STD_MASK(0x22F, 0x7FF) ; // SID, Mask
 CANFD0_SID_Buff[2].VALUE = CANFD_RX_FIFO1_STD_MASK(0x333, 0x7FF) ; // SID, Mask

 CANFD0_XID_Buff[0].LOWVALUE = CANFD_RX_FIFO1_EXT_MASK_LOW(0x220) ; // XID
 CANFD0_XID_Buff[0].HIGHVALUE = CANFD_RX_FIFO1_EXT_MASK_HIGH(0x1FFFFFF0) ; // MASK

 CANFD0_XID_Buff[1].LOWVALUE = CANFD_RX_FIFO1_EXT_MASK_LOW(0x3333) ; // XID
 CANFD0_XID_Buff[1].HIGHVALUE = CANFD_RX_FIFO1_EXT_MASK_HIGH(0x1FFFFFFF) ; // MASK

 CANFD0_XID_Buff[2].LOWVALUE = CANFD_RX_FIFO1_EXT_MASK_LOW(0x44444) ; // XID
 CANFD0_XID_Buff[2].HIGHVALUE = CANFD_RX_FIFO1_EXT_MASK_HIGH(0x1FFFFFFF) ; // MASK

 CANFD0->GFC = 0x20 + 0x08 + 3 ; // reject all no-match SID &XID, reject remote frames

 // CANFD0->GFC = 0x10 + 0x04 + 3 ; //no-match ID into FIFO1. reject remote frames

#endif

 CANFD_EnableInt(CANFD0, (CANFD_IE_TOOE_Msk | CANFD_IE_RF1NE_Msk), 0, 0, 0);
 NVIC_EnableIRQ(CANFD00_IRQn);
}

This code directly organizes the message data in the dedicated RAM area of CANFD which
can only be "written by words" but not by bytes. Therefore, the address of the dedicated RAM
area should be configured in IRAM2 of the compiler Option as shown in Figure 2-2.

Nov. 28, 2023 Page 9 of 14 Rev 1.00

M460 Series

Figure 2-2 Option of MDK

Nov. 28, 2023 Page 10 of 14 Rev 1.00

M460 Series

3. Software and Hardware Requirements

3.1 Software Requirements

• BSP version

- M460_Series_BSP_CMSIS_V3.00.002

• IDE version

- Keil uVersion 5.38

3.2 Hardware Requirements

• Circuit components

- NuMaker-M467HJ V1.0

• Pin Connect

- Connect the CANFD bus of two boards together to display the result of the example
code execution as Figure 3-1.

 Figure 3-1 Pin Connect

Nov. 28, 2023 Page 11 of 14 Rev 1.00

M460 Series

4. Directory Information

The directory structure is shown below.

 EC_M460_uCOSii_4CANFD_TxRx_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

 uCOS_II

 Config Configuration files of uCOSii for this project

 Ports Porting files of uCOSii for M460 series MCU

 Source Source file of uCOSii code

Figure 4-1 Directory Structure

Nov. 28, 2023 Page 12 of 14 Rev 1.00

M460 Series

5. Example Code Execution

1. Browse the sample code folder as described in the Directory Information section and
double-click M460_uCOSii_4CANFD_TxRx.uvprojx.

2. Enter Keil compile mode.

• Build

• Download

• Start/Stop debug session

3. Enter debug mode.

• Run

Nov. 28, 2023 Page 13 of 14 Rev 1.00

M460 Series

6. Revision History

Date Revision Description

2023.11.28 1.00 Initial version.

Nov. 28, 2023 Page 14 of 14 Rev 1.00

M460 Series

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

